K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

Đáp án B

Ta thấy hai tam giác ABC và MNP có hai yếu tố về góc  A ^ = M ^ ,   B ^ = N ^ . Để tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc - cạnh- góc thì cần thêm điều kiện về cạnh kề hai góc đã cho đó là AB=MN

Câu 56: Cho tam giác ABC và MNP có  ;  . Cần thêm một điều kiện gì để tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc - cạnh- góc?A. AC = MP. B. AB = MN . C. BC = NP. D. AC = MN.Câu 57: Trường hợp bằng nhau cạnh - cạnh - cạnh của hai tam giác là:A. Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.B. Nếu ba góc của tam giác này bằng ba góc của tam giác kia thì...
Đọc tiếp

Câu 56: Cho tam giác ABC và MNP có  ;  . Cần thêm một điều kiện gì để tam giác ABC và tam giác MNP bằng nhau theo trường hợp góc - cạnh- góc?

A. AC = MP. B. AB = MN . C. BC = NP. D. AC = MN.

Câu 57: Trường hợp bằng nhau cạnh - cạnh - cạnh của hai tam giác là:

A. Nếu ba cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

B. Nếu ba góc của tam giác này bằng ba góc của tam giác kia thì hai tam giác đó bằng nhau.

C. Nếu hai cạnh của tam giác này bằng ba cạnh của tam giác kia thì hai tam giác đó bằng nhau.

D. Nếu hai góc của tam giác này bằng ba góc của tam giác kia thì hai tam giác đó bằng nhau.

Câu 58: Tam giác ABC và tam giác DEF có: AB = DE ; AC = DF; BC = EF. Trong các ký hiệu sau, ký hiệu nào đúng ?

     A .  ABC =  DEF      B .  ABC =  DFE     

     C .  ABC =  EDF      D .  ABC =  FED

1
29 tháng 12 2021

Câu 57: D

Bài 1: 

a) Ta có: MN2+MP2=152+202=625

               NP2=252=625

=> MN2+MP2=NP2

=> \(\Delta MNP\)vuông tại M ( theo định lý Py-ta-go đảo)

=> đpcm

b) Ta có I là trung điểm MP

=> \(IM=IP=\frac{MP}{2}=\frac{20}{2}=10\left(cm\right)\)

Xét \(\Delta MNI\)vuông tại M có:

MN2+MI2=NI2 ( theo định lý Py-ta-go)

= 152+102=325

=> NI= \(\sqrt{325}\approx18\left(cm\right)\)

Bài 2: 

Xét \(\Delta ABD\)vuông tại D có:

\(AD^2+BD^2=AB^2\)(Theo định lý Py-ta-go)

\(\Rightarrow AD^2+15^2=17^2\)

\(\Rightarrow AD^2=17^2-15^2=64=8^2\)

\(\Rightarrow AD=8\left(cm\right)\)

Lại có: AC=AD+DC

=> 17=8+DC

=> DC=9 cm

Xét \(\Delta BDC\)vuông tại D có:

\(BD^2+DC^2=BC^2\)(Theo định lý Py-ta-go)

\(\Rightarrow BC^2=15^2+9^2=306\)

\(\Rightarrow BC=\sqrt{306}\approx17\left(cm\right)\)

Vậy BC\(\approx\)17 cm

4 tháng 2 2016

* Bổ sung thêm AB=DE

Thì ∆ABC=∆DEF (c.g.c)

* Bổ sung thêm ∠C = ∠F

Thì ∆ABC=∆DEF(g.c.g)

* Bổ sung thêm BC = EF

thì ∆ABC=∆DEF (ch-cgv)

CHÚC BẠN NĂM MỚI VUI VẺ

4 tháng 2 2016

Bạn xem hướng dẫn trên "loigiaihay" cũng có đấy!

3 tháng 3 2019

-Bạn ơi mik sẽ giải còn hình bạn tự vẽ nha!

a,Xét tam giác ADB và tam giác ACE có

AD=AC(gt)

góc DAB=góc CAE( cùng phụ vs góc BAC)

AB=AE(gt)

Suy ra tam giác ADB=tam giác ACE(c.g.c)

suy ra BD=CE(hai cạnh tương ứng)

b,Xét tam giác ABM và tam giác NCM có

AM=NM(gt)

góc AMB=góc NMC(hai góc đối đỉnh)

BM=MC(gt)

suy ra tam giác ABM=tam giác NCM(c.g.c)

suy ra AB=NC(hai cạnh tương ứng) mà AB=AE suy ra NC=AE

Xét tam giác ADE và tam giác CAN có

NC=AE(cmt)

góc DAE=góc ACN

AD=AC(gt)

suy ra tam giác ADE=tam giác CAN(c.g.c)

c, Do tam giác ADE=tam giác CAN(câu b) nên góc ADE=góc CAN( hai góc tương ứng)

suy ra góc DAI+góc ADE=90

suy ra tam giác AID vuông tại I

áp dụng định lí Pytago, ta có:

AD^2-DI^2=AI^2

Do góc AID=90 nên góc AIE=180-90=90(kề bù với góc AID)

suy ra tam giác AIE vuông tại I

Áp dụng định lí Pytago, ta có:

AE^2-IE^2=AI^2

suy ra AD^2-DI^2=AE^2-IE^2

hay AD^2+IE^2=AE^2+DI^2

suy ra đccm

4 tháng 3 2019

Thanks bạn nha!!!

11 tháng 4 2020

a, xét tam giác ABE và tam giác ADE có : AE chung

AB = AD (Gt)

^DAE = ^BAE do AE là pg của ^BAC (gt)

=> tam giác ABE = tam giác ADE (c-g-c)

b, AB = AD (gt)

=> tam giác ABD cân tại A (đn)

c, đề sai