K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
SN
7 tháng 4 2021
Câu a,Vì M thuộc miền trong của tam giác abc. Nên tia BM thuộc miền trong của góc B, nó cắt AC tại B
D nằm giữa A và C, M nằm giữa B và D
Trong tam giác BAD có:
BM+MD
16 tháng 3 2020
a) Xét \(\Delta DMC\) ta có: \(MD+DC>MC\)
\(\Rightarrow MB+MD+DC>MB+MC\)
\(\Rightarrow DB+DC>MB+MC\)
b) Xét \(\Delta ABD\)ta có: \(AB+AD>DB\)
\(\Rightarrow AB+AD+DC>DB+DC\)
\(\Rightarrow AB+AC>DB+DC\)
hihi mới nghĩ ra thế thôi =))
MM
8
14 tháng 4 2020
Không làm mà đòi có ăn thì ............................................
14 tháng 4 2020
Nguôi ta de len day de giúp chu ko de cho may Súa nhe con .......
a, vì M nằm ở trong tam giác ABC nên MC và MB nằm ở trong tam giác ABC
=) MC va MB lần lượt chia góc C và B làm 2 nửa
=) ^B = ^B1+ ^B2 ^C= ^C1+^C2
theo quan hệ giứa góc và cạnh đối diên có
ab tương ứng vs góc C, ac tương ứng vs góc B
MB .........................C1, MC B2
CÓ : ^B+^C > ^B2+^C2
=) AB+AC > MB+MC ( THEO QUAN HỆ GIỮA GÓC VÀ CẠNH ĐỐI DIỆN)
CON B THÌ CHỊU NHÉ
A B C M
a) Làm như bạn ly
b)Từ câu a) suy ra MB + MC < AB + AC;MA+MB < AC + BC
MA + MC < AB + BC
Cộng theo vế suy ra: \(2\left(MA+MB+MC\right)< 2\left(AB+BC+CA\right)\)
Suy ra \(MA+MB+MC< AB+BC+CA\) (1)
Mặt khác,áp dụng BĐT tam giácL
MB + MC > BC.Tương tự với hai BĐT còn lại và cộng theo vế: \(2\left(MA+MB+MC\right)>AB+BC+CA\)
Chia hai vế cho 2: \(MA+MB+MC>\frac{AB+BC+CA}{2}\)