K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
6 tháng 9 2021

Gọi điểm I thỏa mãn : \(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\), do ABC cố định nên điểm I là cố định

ta có : 

\(\left|\overrightarrow{MA}+\overrightarrow{MB}+3\overrightarrow{MC}\right|=\)\(\left|\overrightarrow{MI}+\overrightarrow{IA}+\overrightarrow{MI}+\overrightarrow{IB}+3\overrightarrow{MI}+3\overrightarrow{IC}\right|=\left|5\overrightarrow{MI}\right|=5MI\) nhỏ nhất khi M là hình chiếu của I lên đường thẳng d

6 tháng 1 2021

hình ảnh

 

Kí hiệu v là vectơ nhé 
1) Gọi I là điểm thỏa v IA + v IB + 3 v IC = 0 (1) (đây là vectơ 0 nhé) 
=> v IA + v IA + v AB + 3 v IA + 3 AC = 0 
=> 5 v IA = - (v AB + 3 v AC) => I cố định (do A, B, C cố định) 
Ta có: v a = v MA + v MB + 3 v MC = v MI + v IA + v MI + v IB + 3 v MI + 3 v IB = 
= 5 v MI + ( v IA + v IB + 3 v IC) = 5 v MI (do (1)) 
=> | v a| = | 5 v MI| = 5 MI 
|v a| Min <=> MI min <=> MI = 0 <=> M trùng I 
Vậy khi M là điểm thỏa 5 v MA = - (v AB + 3 v AC) (cố định) thì độ dài vectơ a nhỏ nhất. 

11 tháng 6 2019

Với mọi điểm O ta có :

\(\overrightarrow{u}=\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{2MC}=\overrightarrow{OA}-\overrightarrow{OM}+\overrightarrow{OB}-\overrightarrow{OM}+2\left(\overrightarrow{OC}-\overrightarrow{OM}\right)\)

     \(=\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}-4\overrightarrow{OM}\)

Ta chọn điểm O sao cho \(\overrightarrow{v}=\overrightarrow{OA}+\overrightarrow{OB}+2\overrightarrow{OC}=\overrightarrow{0}\)

( Chú ý: Nếu G là trọng tâm tam giác ABC thì \(\overrightarrow{v}=\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OC}=3\overrightarrow{OG}+\overrightarrow{OC}=4\overrightarrow{OG}+\overrightarrow{GC}\). Bởi vậy để \(\overrightarrow{v}=\overrightarrow{0}\)ta chọn điểm O sao cho \(\overrightarrow{GO}=\frac{1}{4}\overrightarrow{GC}\))

Khi đó \(\overrightarrow{u}=-4\overrightarrow{OM}\)và do đó \(|\overrightarrow{u}|=4OM\)

Độ dài vectơ \(\overrightarrow{u}\)nhỏ nhất khi và chỉ khi 4OM nhỏ nhất hay M là hình chiếu vuông góc của O trên d

NV
23 tháng 12 2022

a.

Gọi G là trọng tâm tam giác ABC \(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow T=\left|\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right|=\left|\overrightarrow{MG}+\overrightarrow{GA}+\overrightarrow{MG}+\overrightarrow{GB}+\overrightarrow{MG}+\overrightarrow{GC}\right|\)

\(=\left|3\overrightarrow{MG}\right|=3\left|\overrightarrow{MG}\right|\)

\(\Rightarrow T_{min}\) khi và chỉ khi \(MG_{min}\Rightarrow MG=0\) hay M trùng G

Theo công thức trọng tâm: \(\left\{{}\begin{matrix}x_M=\dfrac{2-1+6}{3}=\dfrac{7}{3}\\y_M=\dfrac{3-1+0}{3}=\dfrac{2}{3}\end{matrix}\right.\) \(\Rightarrow M\left(\dfrac{7}{3};\dfrac{2}{3}\right)\)

b.

Tương tự câu a, ta có \(T=3\left|\overrightarrow{MG}\right|\) đạt min  khi MG đạt min

\(\Rightarrow\) M là hình chiếu vuông góc của G lên Ox

Mà \(G\left(\dfrac{7}{3};\dfrac{2}{3}\right)\Rightarrow M\left(\dfrac{7}{3};0\right)\)

c.

Do M thuộc Ox nên tọa độ có dạng: \(M\left(m;0\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(2-m;3\right)\\\overrightarrow{MB}=\left(-1-m;-1\right)\end{matrix}\right.\)

\(\Rightarrow\overrightarrow{u}=\left(3m+6;7\right)\)

\(\Rightarrow\left|\overrightarrow{u}\right|=\sqrt{\left(3m+6\right)^2+7^2}\ge\sqrt{0+7^2}=7\)

Dấu "=" xảy ra khi \(3m+6=0\Rightarrow m=-2\)

\(\Rightarrow M\left(-2;0\right)\)

23 tháng 12 2022

<3 em cảm ơn "giáo viên"!

12 tháng 1 2021

Gọi G là trọng tâm ΔABC

⇒ VT = 6MG

VP  = \(\left|2\left(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}\right)+\overrightarrow{MC}-\overrightarrow{MA}\right|\)

VP = \(\left|6\overrightarrow{MG}+\overrightarrow{AC}\right|\)

Xác định điểm I sao cho \(6\overrightarrow{IG}+\overrightarrow{AC}=\overrightarrow{0}\) (cái này chắc bạn làm được)

VP = \(\left|6\overrightarrow{MI}+6\overrightarrow{IG}+\overrightarrow{AC}\right|\)

VP = 6 MI

Khi VT = VP thì MG = MI

⇒ M nằm trên đường trung trực của IG

Tập hợp các điểm M : "Đường trung trực của IG"

6 tháng 2 2020

một đường tròn

25 tháng 12 2020

1.

Lấy điểm A' đối xứng với A qua Ox \(\Rightarrow A\left(-2;-1\right)\)

M có tọa độ \(M\left(x;0\right)\)

Ta có \(AM+MB=A'M+MB\ge AB=\sqrt{4^2+5^2}=\sqrt{41}\)

\(min=41\Leftrightarrow M,A',B\) thẳng hàng

\(\Leftrightarrow\overrightarrow{A'M}=k\overrightarrow{A'B}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+2=k.4\\1=k.5\end{matrix}\right.\Rightarrow x=-\dfrac{6}{5}\Rightarrow M\left(-\dfrac{6}{5};0\right)\)

25 tháng 12 2020

2.

Gọi N là trung điểm BC

\(\overrightarrow{MA}.\left(\overrightarrow{MB}+\overrightarrow{MC}\right)=0\)

\(\Leftrightarrow2\overrightarrow{MA}.\overrightarrow{MN}=0\)

\(\Leftrightarrow2MA.MN.cosAMN=0\)

\(\Leftrightarrow\left[{}\begin{matrix}MA=0\\MN=0\\cosAMN=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}M\equiv A\\M\equiv N\\\widehat{AMN}=90^o\end{matrix}\right.\)

\(\Rightarrow M\) thuộc đường tròn đường kính AN