Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm AB \(\Rightarrow\overrightarrow{CG}=\dfrac{2}{3}\overrightarrow{CM}\)
Mà \(\overrightarrow{CM}=\dfrac{1}{2}\left(\overrightarrow{CA}+\overrightarrow{CB}\right)\) \(\Rightarrow\overrightarrow{CG}=\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\)
Do I là trung điểm AG:
\(\overrightarrow{CI}=\dfrac{1}{2}\overrightarrow{CG}+\dfrac{1}{2}\overrightarrow{CA}=\dfrac{1}{2}\left(\dfrac{1}{3}\overrightarrow{CA}+\dfrac{1}{3}\overrightarrow{CB}\right)+\dfrac{1}{2}\overrightarrow{CA}=\dfrac{2}{3}\overrightarrow{CA}+\dfrac{1}{6}\overrightarrow{CB}\)
Ta có: \(\overrightarrow{IA}=3.\overrightarrow{IB}\)
\(\overrightarrow{AB}=2.\overrightarrow{BI}\)
\(\Rightarrow\overrightarrow{BI}=\dfrac{1}{2}\overrightarrow{AB}\)
\(\Rightarrow\overrightarrow{CB}+\overrightarrow{BI}=\overrightarrow{CB}+\dfrac{1}{2}\overrightarrow{AB}\)
\(\Rightarrow\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AB}+\dfrac{1}{2}\overrightarrow{AB}\)
\(\Rightarrow\overrightarrow{CI}=\overrightarrow{CA}+\dfrac{3}{2}\overrightarrow{AB}\)
\(\Rightarrow\overrightarrow{CI}=\overrightarrow{CA}+\dfrac{3}{2}\overrightarrow{AC}+\dfrac{3}{2}\overrightarrow{CB}\)
\(\Rightarrow\overrightarrow{CI}=\overrightarrow{CA}-\dfrac{3}{2}\overrightarrow{CA}+\dfrac{3}{2}\overrightarrow{CB}\)
\(\Rightarrow\overrightarrow{CI}=\dfrac{-1}{2}\overrightarrow{CA}+\dfrac{3}{2}\overrightarrow{CB}\)
\(\Rightarrow\overrightarrow{CI}=\dfrac{1}{2}\left(3\overrightarrow{CB}-\overrightarrow{CA}\right)\)
\(\Rightarrow\) Đáp án B đúng
Lời giải:
a) Kéo dài $AG$ cắt $BC$ tại trung điểm $M$. Hiển nhiên $\overrightarrow{BM}, \overrightarrow{CM}$ là vecto đối nên tổng bằng vecto không.
Theo tính chất trọng tâm ta có:
$\overrightarrow{AI}=\frac{1}{2}\overrightarrow{AG}=\frac{1}{2}.\frac{2}{3}\overrightarrow{AM}=\frac{1}{3}\overrightarrow{AM}$
$=\frac{1}{6}(\overrightarrow{AM}+\overrightarrow{AM})=\frac{1}{6}(\overrightarrow{AB}+\overrightarrow{BM}+\overrightarrow{AC}+\overrightarrow{CM})$
$=\frac{1}{6}(\overrightarrow{AB}+\overrightarrow{AC})$
$=\frac{1}{6}(\overrightarrow{AC}+\overrightarrow{CB}+\overrightarrow{AC})$
$=\frac{1}{6}(2\overrightarrow{AC}+\overrightarrow{CB})$
$=\frac{-1}{3}\overrightarrow{CA}+\frac{1}{6}\overrightarrow{CB}$
$=\frac{-1}{3}\overrightarrow{a}+\frac{1}{6}\overrightarrow{b}$
----------------------
$\overrightarrow{AK}=\frac{1}{5}\overrightarrow{AB}=\frac{1}{5}(\overrightarrow{AC}+\overrightarrow{CB})=\frac{1}{5}(-\overrightarrow{CA}+\overrightarrow{CB})$
$=\frac{-1}{5}\overrightarrow{a}+\frac{1}{5}\overrightarrow{b}$
------------------
$\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=\overrightarrow{a}-\frac{1}{3}\overrightarrow{a}+\frac{1}{6}\overrightarrow{b}$
$=\frac{2}{3}\overrightarrow{a}+\frac{1}{6}\overrightarrow{b}$
-------------------
$\overrightarrow{CK}=\overrightarrow{CA}+\overrightarrow{AK}=\overrightarrow{a}-\frac{1}{5}\overrightarrow{a}+\frac{1}{5}\overrightarrow{b}=\frac{4}{5}\overrightarrow{a}+\frac{1}{5}\overrightarrow{b}$
b)
Từ phần a ta thấy: $\overrightarrow{CI}=\frac{5}{6}\overrightarrrow{CK}$ nên $C,I,K$ thẳng hàng.
Đok đề cứ thấy sai sai... Sao cho J lại thoả mãn \(\overrightarrow{BC}=\frac{1}{2}\overrightarrow{AC}-\frac{2}{3}\overrightarrow{AB}\) :))
Lời giải:
Kéo dài $AG$ cắt $BC$ tại $M$ thì $M$ là trung điểm $BC$
Ta có:
$\overrightarrow{CI}=\overrightarrow{CA}+\overrightarrow{AI}=\overrightarrow{CA}+\frac{1}{2}.\overrightarrow{AG}=\overrightarrow{CA}+\frac{1}{2}.\frac{2}{3}.\overrightarrow{AM}$
$=\overrightarrow{CA}+\frac{1}{3}\overrightarrow{AM}$
$=\overrightarrow{CA}+\frac{1}{3}(\overrightarrow{AC}+\overrightarrow{CM})$
$=\overrightarrow{CA}+\frac{1}{3}(-\overrightarrow{CA}+\frac{1}{2}\overrightarrow{CB})$
$=\frac{2}{3}\overrightarrow{CA}+\frac{1}{6}\overrightarrow{CB}$
Vậy $m=\frac{2}{3}$
Ta có: \(BC = \frac{{AB}}{{\cos {{30}^o}}} = 3:\frac{{\sqrt 3 }}{2} = 2\sqrt 3 \); \(AC = BC.\sin \widehat {ABC} = 2\sqrt 3 .\sin {30^o} = \sqrt 3 .\)
\(\overrightarrow {BA} .\overrightarrow {BC} = \left| {\overrightarrow {BA} } \right|.\left| {\overrightarrow {BC} } \right|\cos (\overrightarrow {BA} ,\overrightarrow {BC} ) = 3.2\sqrt 3 .\cos \widehat {ABC} = 6\sqrt 3 .\cos {30^o} = 6\sqrt 3 .\frac{{\sqrt 3 }}{2} = 9.\)
\(\overrightarrow {CA} .\overrightarrow {CB} = \left| {\overrightarrow {CA} } \right|.\left| {\overrightarrow {CB} } \right|\cos (\overrightarrow {CA} ,\overrightarrow {CB} ) = \sqrt 3 .2\sqrt 3 .\cos \widehat {ACB} = 6.\cos {60^o} = 6.\frac{1}{2} = 3.\)