Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 2:
\(\widehat{ADB}=180^0-80^0=100^0\)
Ta có: \(\widehat{ADB}+\widehat{BAD}+\widehat{B}=\widehat{ADC}+\widehat{CAD}+\widehat{C}\)
\(\Leftrightarrow\widehat{B}+100^0=\widehat{C}+80^0\)
\(\Leftrightarrow1.5\widehat{C}-\widehat{C}=-20^0\)
\(\Leftrightarrow\widehat{C}=40^0\)
hay \(\widehat{B}=60^0\)
=>\(\widehat{BAC}=80^0\)

a/ tam giác BAH và tam giác CAH có
AB=AC ( tam giác ABC cân vì góc B = góc C)
góc BHA = góc CHA = 90 độ
góc B = góc C
=> tam giác BAH = tam giác CAH (CH - GN)
=>góc BAH = góc HAC

Đặ \(\hat{A}=a;\hat{B}=b;\hat{C}=c\)
Theo đề, ta có: 5a=3b=15c
=>\(\frac{5a}{15}=\frac{3b}{15}=\frac{15c}{15}\)
=>\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\frac{a}{3}=\frac{b}{5}=\frac{c}{1}=\frac{a+b+c}{3+5+1}=\frac{180}{9}=20\)
=>\(\begin{cases}a=20\cdot3=60\\ b=20\cdot5=100\\ c=20\cdot1=20\end{cases}\)
=>\(\hat{A}=60^0;\hat{B}=100^0;\hat{C}=20^0\)
AD là phân giác của góc BAC
=>\(\hat{BAD}=\hat{CAD}=\frac12\cdot\hat{BAC}=30^0\)
Xét ΔADC có \(\hat{ADB}\) là góc ngoài tại đỉnh D
nên \(\hat{ADB}=\hat{DAC}+\hat{DCA}=30^0+20^0=50^0\)
Tam giác \(A B C\) có các góc \(\hat{A} , \hat{B} , \hat{C}\) thỏa mãn:
\(5 \hat{A} = 3 \hat{B} = 15 \hat{C} .\)
1 . Tính số đo các góc của tam giác \(A B C\).
Gọi giá trị chung bằng \(k\). Ta có:
\(5 \hat{A} = 3 \hat{B} = 15 \hat{C} = k .\)
Suy ra:
\(\hat{A} = \frac{k}{5} , \hat{B} = \frac{k}{3} , \hat{C} = \frac{k}{15} .\)
Vì tổng ba góc của tam giác bằng \(180^{\circ}\):
\(\frac{k}{5} + \frac{k}{3} + \frac{k}{15} = 180.\)
Quy đồng mẫu số 15:
\(\frac{3 k}{15} + \frac{5 k}{15} + \frac{k}{15} = 180.\) \(\frac{9 k}{15} = 180.\) \(\frac{3 k}{5} = 180 \Rightarrow k = 180 \times \frac{5}{3} = 300.\)
Từ đó:
\(\hat{A} = \frac{300}{5} = 60^{\circ} ,\) \(\hat{B} = \frac{300}{3} = 100^{\circ} ,\) \(\hat{C} = \frac{300}{15} = 20^{\circ} .\)
Vậy \(\hat{A}=60^{\circ};\hat{B}=100^{\circ};\hat{C}=20^{\circ}.\)
2.Tính \(\hat{A D B}\).
- Tia phân giác \(A D\) chia góc \(\hat{A} = 60^{\circ}\) thành hai phần bằng nhau:
\(\hat{B A D} = \hat{D A C} = 30^{\circ} .\)
- Xét tam giác \(A D B\):
\(\hat{B A D} = 30^{\circ} , \hat{B} = 100^{\circ} .\)
Suy ra góc còn lại:
\(\hat{A D B} = 180^{\circ} - \left(\right. 30^{\circ} + 100^{\circ} \left.\right) = 50^{\circ} .\)
Vậy \(\hat{A}=60^{\circ};\hat{B}=100^{\circ};\hat{C}=20^{\circ}.\)
CHO MÌNH XIN 1 TICK NHA\(\hat{A D B}=50^{\circ}\)

A B C E D I
a) Xét tam giác ABD và EBD có:
BA = BE (gt)
\(\widehat{ABD}=\widehat{EBD}\) (Do BD là tia phân giác góc B)
BD chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c-g-c\right)\)
\(\Rightarrow AD=ED\) (Hai cạnh tương ứng)
b) Do \(\Delta ABD=\Delta EBD\left(cmt\right)\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)
Xét tam giác vuông ABC ta có \(\widehat{ABC}=90^o-\widehat{ACB}\)
Xét tam giác vuông DEC ta có \(\widehat{EDC}=90^o-\widehat{ACB}\)
Vậy nên \(\widehat{EDC}=\widehat{ABC}\)
c) Gọi giao điểm của AE và BD là I.
Xét tam giác ABI và tam giác EBI có:
AB = EB (gt)
\(\widehat{ABI}=\widehat{EBI}\)
BD chung
\(\Rightarrow\Delta ABI=\Delta EBI\left(c-g-c\right)\)
\(\Rightarrow\widehat{AIB}=\widehat{EIB}\) (Hai góc tương ứng)
Mà chúng lại ở vị trí kề bù nên \(\widehat{AIB}=\widehat{EIB}=90^o\)
Vậy nên \(AE\perp BD\)