K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
29 tháng 12 2021
a: Xét ΔCAH vuông tại H và ΔCDH vuông tại H có
HA=HD
CH chung
Do đó: ΔCAH=ΔCDH
1 tháng 8 2019
a) Xét ∆ADC có :
CH là trung tuyến AD ( AH = HD )
CH là đường cao
=> ∆ADC cân tại C
=> CH là phân giác DCA
Hay CB là phân giác DCA
b) Xét ∆ vuông BHA và ∆ vuông DHE ta có :
BHA = DHE
HA = HD
=> ∆BHA = ∆DHE (cgv-gn)
=> BAH = HDE
Mà 2 góc này ở vị trí so le trong
=> BA//DE
c) Chứng minh DKA = 90°
=> HK = HD = HA ( tính chất )
=> HK = \(\frac{1}{2}\:AD\)
17 tháng 5 2022
a, Xét Δ EHA và Δ EHD, có :
\(\widehat{EHA}=\widehat{EHD}=90^o\)
HA = HD (gt)
EH là cạnh chung
=> Δ EHA = Δ EHD (c.g.c)
=> EA = ED
a, xét tam giác ABH và tam giác DBH có : BH chung
góc AHB = góc DHB = 90
AH = HD (gt)
=> tam giác AHB = tam giác DBH (2cgv)
a) Xét \(\Delta ABH\)và \(\Delta DBH\)
ta có AH = DH (gt)
\(\widehat{AHB}=\widehat{DHB}=\left(90^0\right)\)
BH chung
nên \(\Delta ABH=\Delta DBH\left(c-g-c\right)\)
b) Dễ chứng minh \(\Delta AHC=\Delta DHC\left(c-g-c\right)\)
\(\Rightarrow\widehat{ACH}=\widehat{DCH}\)
do đó CH là tpg của \(\widehat{ACD}\)
c) Dễ chứng minh \(\Delta BHD=\Delta EHA\left(g-c-g\right)\)
\(\Rightarrow BH=HE\)
Xét \(\Delta ABH\)và \(\Delta DEH\)
ta có BH = HE (cmt)
\(\widehat{AHB}=\widehat{DHE}\left(=90^0\right)\)
AH = DH (gt)
nên \(\Delta ABH=\Delta DEH\left(c-g-c\right)\)
suy ra \(\widehat{ABH}=\widehat{EDH}\)
mà hai góc này ở vị trí so le trong
do đó AB // DE