Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta sẽ nối điểm F với D
Ta có: EF//BC=>EF//BD(D\(\in\)BC)=>^EFD=^BDF(so le trong).
ED//AB=>ED//BF(F\(\in\)AB)=>^BFD=^EDF
Xét tam giác BFD và tam giác EDF:^EFD=^BDF; FD chung; ^BFD=^EDF=> Tam giác BFD = Tam giác EDF (g.c.g)
=>BF=ED(2 cạnh tương ứng). Mà AE=BF=>AE=ED(t/c bắc cầu)
Tam giác BFD=Tam giác EDF=>BD=FE=>^FBD=^FED(2góc tương ứng)
FE//BD=>^FBD=^AFE(đồng vị)
Xét tam giác BFD và tam giác FAE có: ^FBD=^AFE; BD=FE; ^FDB=^AEF=> Tam giác BFD=Tam giác FAE (g.c.g)
=>^BFD=^FAE=>FD//AE. Do FD//AE; ED//AF=>FD=AE; ED=AF(t/c đoạn chắn)
Mà DE=AE(cmt)=>DF=AF=AE=ED=>^FDE=^AED=90o
Xét tam giác FDE và tam giác AED: DE chung; ^FDE=^AED=90o; FD=AE=> Tam giác FDE=Tam giác AED(c.g.c)(1)
FD//EC=>^FDE=^CED(so le trg). FE//DC=>^FED=^CDE(so le trg)
Xét tam giác FED và tam giác CDE: ^FDE=^CED; DE chung; ^FED=^CDE=>Tam giác FED=Tam giác CDE(g.c.g)(2)
Từ (1) và (2)=> Tam giác AED=Tam giác CED=>DA=DC
=>Tam giác BFD=Tam giác DEC(g.c.g)=>DB=DA. mà DA=DC=> Điểm D cách đều AB và AC (đpcm)
*Tự vẽ hình
a) Có : DE//BC(GT)
EF//AB(GT)
=> BDEF là hình bình hành
=> BD=EF
Mà : AD=DB(GT)
=> AD=EF (đccm)
b) Ta có : AD=DB(GT)
DE//BC (GT)
=> DE là đường trung bình của tam giác ABC
=> AE=EC
Có : AE=EC(cmt)
EF//AB(GT)
=> EF là đường trung bình của tam giác ABC
=> BF=FC
Mà : BF=DE(BDEF-hình bình hành)
=> FC=DE
Xét tam giác ADE và EFC có :
AE=EC(cmt)
AD=EF(cm ý a)
DE=FC(cmt)
=> Tam giác ADE=EFC(c.c.c)
c) Đã chứng minh ở ý b
*Cách khác:
Giải:
Hình bạn tự vẽ nhé.
a) Ta có: BD // EF (vì AB /// EF)
=> Góc BDF = góc DFE (2 góc so le trong)
Vì DE // BC (gt)
nên góc EDF = góc BFD (2 góc so le trong)
Xét tam giác EDF và tam giác BDF có:
Góc BDF = góc DFE (chứng minh trên)
DF là cạnh chung
Góc EDF = góc BFD (chứng minh trên)
=> Tam giác DEF = tam giác FBD (g.c.g)
=> BD = EF ( 2 cạnh tương ứng) (đpcm)
Mà BD = AD (vì D là trung điểm của AB)
=> AD = EF (đpcm)
b) Ta có: AB // EF (gt)
=> Góc A = góc CEF (2 góc đồng vị)
Lại có: tam giác DEF = tam giác FBD (chứng minh trên)
=> Góc DEF = góc B (2 góc tương ứng) (1)
Mà DE // BC (gt)
=> Góc DEF = góc CFE (2 góc so le trong) (2)
Góc ADE = góc B (2 góc đồng vị)
Từ (1), (2) => Góc B = góc CFE
Mà góc B = góc ADE (chứng minh trên)
=> Góc ADE = góc CFE
Xét tam giác ADE và tam giác CEF có:
Góc CEF = góc A (chứng minh trên)
AD = EF (chứng minh trên)
Góc ADE = góc CFE (chứng minh trên)
=> Tam giác ADE = tam giác EFC (g.c.g) (đpcm)
c) Ta có: tam giác ADE = tam giác EFC (chứng minh trên)
=> AE = CE (2 cạnh tương ứng) (đpcm)
a: Xét ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔAMB=ΔAMC
=>\(\widehat{BAM}=\widehat{CAM}\)
=>\(\widehat{DAK}=\widehat{EAK}\)
=>AK là phân giác của góc DAE
Xét ΔADE có
AK là đường cao
AK là đường phân giác
Do đó: ΔADE cân tại A
c: Xét ΔBAC có \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)
nên DE//BC
mà F\(\in\)DE và M\(\in\)BC
nên EF//MC
Xét tứ giác EFCM có
EF//CM
EF=CM
Do đó: EFCM là hình bình hành
=>EC cắt FM tại trung điểm của mỗi đường
mà H là trung điểm của EC
nên H là trung điểm của FM
=>F,H,M thẳng hàng
a: Xét ΔABE có
AD vừa là đường cao, vừa là trung tuyến
=>ΔABE cân tại A
b: Gọi M là giao của AD và FE
Xét ΔAME có
ED,AF là đường cao
ED cắt AF tại C
=>C là trực tâm
=>M,C,K thẳng hàng
=>ĐPCM
xét tam giác ABE và tam giác ACF có :
góc AEB = góc AFC = 90 do ...
góc CAB chung
=> tam giác ABE ~ tam giác ACF (g.g)
=> AB/AC = AE/AF
=> AB.AF = AC.AE
a: Xét ΔAEB có
AD vừa là đường cao, vừa là trung tuyến
=>ΔAEB cân tại A
b: Gọi giao của FC và AD là G
Xét ΔAGC có
AF,CD là đường cao
AF cắt CD tại E
=>E là trực tâm
=>GE vuông góc AC
=>G,E,F thẳng hàng
=>AD,EF,CK đồng quy