\(\in\) BC, kẻ EF // BC (F
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2017

A B C F E D M N K

Ta có: EF // BD (gt)

BF // ED (gt)

Suy ra EF = BD; BF = DE (t/c đoạn chắn)

Trên AB lấy K sao cho AF = BK

\(\Delta AFE\)\(\Delta KBD\) có:

AF = BK (cách vẽ)

AFE = KBD (đồng vị)

EF = BD (cmt)

Do đó, \(\Delta AFE=\Delta KBD\left(c.g.c\right)\)

=> AE = KD (2 cạnh t/ứ)

= BF = ED (theo gt AE = BF, theo cmt BF = ED)

Kẻ \(DM\perp AB;DN\perp AC\)

\(\Delta\) DMK vuông tại M và \(\Delta\) DNE vuông tại N có:

DK = DE (cmt)

MKD = NED (cùng đồng vị với FAE)

Do đó, \(\Delta DMK=\Delta DNE\) (cạnh huyền - góc nhọn)

=> DM = DN (2 cạnh t/ứ)

=> D cách đều AB và AC (đpcm)

5 tháng 5 2017

thanks

12 tháng 1 2020

A B C D E F

  GT  

 △ABC: AB < AC. BAD = DAC = BAC/2 (D \in BC)

 E \in AC : AE = AB

 F \in AB : AF = AC

 KL

 a, △ABD = △AED

 b, AD ⊥ FC

 c, △BDF = △EDC ; BF = EC

 d, F, D, E thẳng hàng

Bài làm:

a, Xét △ABD và △AED

Có: AB = AE (gt)

    BAD = DAE (gt) 

 AD là cạnh chung

=> △ABD = △AED (c.g.c)

b, Vì △ABD = △AED (cmt)

=> BD = ED (2 cạnh tương ứng)

=> D thuộc đường trung trực của BE   (1)

Vì AB = AE (gt) => A thuộc đường trung trực của BE   (2)

Từ (1) và (2) => AD là đường trung trực của BE

=> AD ⊥ FC

c, Vì △ABD = △AED (cmt)

=> ABD = AED (2 góc tương ứng)

Ta có: ABD + DBF = 180o (2 góc kề bù)

AED + DEC = 180o (2 góc kề bù)

Mà ABD = AED (cmt)

=> DBF = DEC

Lại có: AB + BF = AF

AE + EC = AC

Mà AB = AE (gt) ; AF = AC (gt)

=> BF = EC

Xét △BDF và △EDC

Có: BD = ED (cmt)

    DBF = DEC (cmt)

      BF = EC (cmt)

=> △BDF = △EDC (c.g.c)

d, Vì △BDF = △EDC (cmt)

=> BDF = EDC (2 góc tương ứng)

Ta có: BDE + EDC = 180o (2 góc kề bù)

=> BDE + BDF = 180o

=> FDE = 180o

=> 3 điểm F, D, E thẳng hàng

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=ABa) Chứng minh: DB=DMb) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàngCâu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BEa) Chứng minh: DA=DEb) Tia ED cắt BA tại F....
Đọc tiếp

Câu 1. Cho tam giác ABC vuông tại A (AB<AC). Tia phân giác góc A cắt BC tại D. Trên cạnh AC lấy điểm M sao cho AM=AB

a) Chứng minh: DB=DM

b) Gọi E là giao điểm AB và MD. Chứng minh \(\Delta BED=\Delta MCD\)

c) Gọi H là trung điểm của EC. Chứng minh ba điểm A,D,H thẳng hàng

Câu 2 . Cho \(\Delta ABC\)có AB<AC. Tia phân giác góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho BA=BE

a) Chứng minh: DA=DE

b) Tia ED cắt BA tại F. Chứng minh \(\Delta DAF=\Delta DEC\)

c) Gọi H là trung diểm của FC. Chứng minh ba điểm B,D,H thẳng hàng

Câu 3. Cho \(\Delta ABC\)cân tại A. Kẻ AH vuông góc với BC (\(H\in BC\))

a) Chứng minh: HB=HC

b) Kẻ \(HD\perp AB\left(D\in AB\right)\)và \(HE\perp AC\left(E\in AC\right)\). Chứng minh \(\Delta HDE\)cân

Câu 4. Cho tam giác ABC vuông tại B, đường phân giác \(AD\left(D\in BC\right)\). Kẻ DE vuông góc với \(AC\left(E\in AC\right)\)

a) Chứng minh: \(\Delta ABD=\Delta AED;\)

b) BE là đường trung trực của đoạn thẳng AD

c) Gọi F là giao điểm của hai đường thẳng AB và ED  Chứng minh BF=EC

3
4 tháng 5 2019

Câu a

Xét tam giác ABD và AMD có

AB = AM từ gt

Góc BAD = MAD vì AD phân giác BAM

AD chung

=> 2 tam guacs bằng nhau

4 tháng 5 2019

Câu b

Ta có: Góc EMD bằng CMD vì góc ABD bằng AMD

Bd = bm vì 2 tam giác ở câu a bằng nhau

Góc BDE bằng MDC đối đỉnh

=> 2 tam giác bằng nhau

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cma) Tính độ dài BCb) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)c) Chứng minh AM<MCd) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàngII ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)1) Chứng tỏ tam giác ABC là tam giác vuông2) Trên cạnh BC...
Đọc tiếp

I ) Cho tam giác ABC vuông tại A có AB=3cm; AC=4cm

a) Tính độ dài BC

b) Kẻ Bm là tia p.g của \(\widehat{ABC}\left(M\in AC\right),MH⊥BC\left(H\in BC\right)\)Chứng minh \(\Delta BMA=\Delta BMH\)

c) Chứng minh AM<MC

d) Trên tia đối của tia AB lấy N sao cho AN=CH. Chứng minh 3 điểm N,M,H thẳng hàng

II ) Cho tam giác ABC có AB=3cm; AC=4cm: BC=5cm. Kẻ đường cao AH \(\left(H\in BC\right)\)

1) Chứng tỏ tam giác ABC là tam giác vuông

2) Trên cạnh BC lấy D sao cho BD=BA, trên cạnh AC lấy E sao AE=AH. Gọi F là giao điểm của DE và AH, Chứng minh

a) \(DE⊥AC\)

b) \(\Delta ACF\)cân

c) \(BC+AH>AC+AB\)

III ) Cho tam giác ABC vuôg tại B có \(\widehat{BAC=60^o}\).Vẽ tia p.g AD của \(\widehat{BAC}\left(D\in BC\right)\)từ D vẽ \(DE⊥AC\left(E\in AC\right)\). Chứng minh rằng

a) \(AB=AE\)

b) \(AD⊥BE\)

c) \(DC>AB\)

                                    GIÚP MÌNK NHA!!!!!!!!!

 

0
5 tháng 4 2017

A B C E D F

Ta sẽ nối điểm F với D

Ta có: EF//BC=>EF//BD(D\(\in\)BC)=>^EFD=^BDF(so le trong).

ED//AB=>ED//BF(F\(\in\)AB)=>^BFD=^EDF

Xét tam giác BFD và tam giác EDF:^EFD=^BDF; FD chung; ^BFD=^EDF=> Tam giác BFD = Tam giác EDF (g.c.g)

=>BF=ED(2 cạnh tương ứng). Mà AE=BF=>AE=ED(t/c bắc cầu)

Tam giác BFD=Tam giác EDF=>BD=FE=>^FBD=^FED(2góc tương ứng)

FE//BD=>^FBD=^AFE(đồng vị)

Xét tam giác BFD  và tam giác FAE có: ^FBD=^AFE; BD=FE; ^FDB=^AEF=> Tam giác BFD=Tam giác FAE (g.c.g)

=>^BFD=^FAE=>FD//AE. Do FD//AE; ED//AF=>FD=AE; ED=AF(t/c đoạn chắn)

Mà DE=AE(cmt)=>DF=AF=AE=ED=>^FDE=^AED=90o

Xét tam giác FDE và tam giác AED: DE chung; ^FDE=^AED=90o; FD=AE=> Tam giác FDE=Tam giác AED(c.g.c)(1)

FD//EC=>^FDE=^CED(so le trg). FE//DC=>^FED=^CDE(so le trg)

Xét tam giác FED và tam giác CDE: ^FDE=^CED; DE chung; ^FED=^CDE=>Tam giác FED=Tam giác CDE(g.c.g)(2)

Từ (1) và (2)=> Tam giác AED=Tam giác CED=>DA=DC

=>Tam giác BFD=Tam giác DEC(g.c.g)=>DB=DA. mà DA=DC=> Điểm D cách đều AB và AC (đpcm)