K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2020

A B C D E F

Áp dụng định lý Ta lét ta có:

ED // AC \(\Rightarrow\frac{AE}{AB}=\frac{CD}{BC}\)

DF // AB \(\Rightarrow\frac{AF}{AC}=\frac{BD}{BC}\)

Cộng theo vế:

\(\frac{AE}{AB}+\frac{AF}{AC}=\frac{CD+BD}{BC}=\frac{BC}{BC}=1\)

5 tháng 9 2023

Ta đặt:  \(S_{BEMF}=S_1;S_{ABC}=S\)

Kẻ \(AK\perp BC\) ; \(AK\) cắt \(EM\left\{H\right\}\)

Ta có: \(S_1=EM.HK\)

\(\Leftrightarrow S=\dfrac{1}{2}BC.AK\)

\(\Leftrightarrow\dfrac{S_1}{S}=2\dfrac{EM}{BC}.\dfrac{KH}{AK}\)

Đặt \(MA=x;MC=y\) . Theo định lý Thales ta có:

\(\dfrac{EM}{BC}=\dfrac{x}{x+y};\dfrac{HK}{AK}=\dfrac{x}{x+y}\)

\(\Leftrightarrow\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\)

Áp dụng bất đẳng thức Cosi dạng \(\dfrac{ab}{\left(a+b\right)^2}\le\dfrac{1}{4}\) ta được:

\(\dfrac{S_1}{S}=\dfrac{2xy}{\left(x+y\right)^2}\le\dfrac{1}{2}\) hay \(S_1\le\dfrac{1}{2}S\)

\(\Leftrightarrow MaxS_1=\dfrac{1}{2}S\)

\(\Leftrightarrow\) \(M\) là trung điểm của \(AC\)

11 tháng 7 2019

Câu hỏi của Pham Van Hung - Toán lớp 9 - Học toán với OnlineMath

Bạn tham khảo link này nhé!

a: góc BAC=góc BCA

=>sđ cung BC=sđ cung BA

b: xy//DE
=>góc AED=góc yAE=góc ABC

c: góc AED=góc ABC

=>góc ABC+góc DEC=180 độ

=>BCDE nội tiếp

 

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Hình vẽ:undefined

AH
Akai Haruma
Giáo viên
25 tháng 2 2021

Lời giải:

Ta có:

$PM\parallel AC$ nên $\widehat{PMB}=\widehat{ACB}$

Mà $\widehat{ACB}=\widehat{ABC}=\widehat{PBM}$ do tam giác $ABC$ cân nên $\widehat{PMB}=\widehat{PBM}$

$\Rightarrow \triangle PBM$ cân tại $P$

$\Rightarrow PB=PM$

Mà $PM=PD$ do tính đối xứng

$\Rightarrow PB=PM=PD$ nên $P$ là tâm đường tròn ngoại tiếp $(DBM)$

$\Rightarrow \widehat{BDM}=\frac{1}{2}\widehat{BPM}$ (tính chất góc nt và góc ở tâm cùng chắn 1 cung)

$=\frac{1}{2}\widehat{BAC}$

Tương tự, $Q$ cũng là tâm ngoại tiếp $(DCM)$

$\Rightarrow \widehat{MDC}=\frac{1}{2}\widehat{MQC}=\frac{1}{2}\widehat{BAC}$ 

Như vậy:

$\widehat{BDC}=\widehat{BDM}+\widehat{MDC}=\widehat{BAC}$

Kéo theo $D\in (ABC)$

Ta có đpcm.

Cho mình hỏi bài này đã được giải chưa vậy? Mình hiện đang giải bài này nhưng mình vẫn chưa thể giải được.

8 tháng 4 2020

Bài này có khá nhiều cách làm

Ta có: \(a^2=\left(x+y+z\right)^2=x^2+y^2+z^2+2\left(xy+yz+zx\right)\) (1)

Cách 1:

Gọi I là giao điểm của MQ với đường tròn nội tiếp tam giác ABC

Xét \(\Delta MHQ\) và \(\Delta HDQ\) có: \(\hept{\begin{cases}\widehat{Q}chung\\\widehat{QMH}=\widehat{QHD}\end{cases}}\)  => Tam giác MHQ đồng dạng với tam giác HDQ (gg)

=> \(\frac{QH}{QM}=\frac{QD}{QH}\) hay QH2=QM.QD=MJ=x (do tính đổi xứng tam giác ABC đều qua trụ BF) nên QH2=x.y(2)

Mặt khác vì Q thuộc HC nên QH=HC-QC=\(\frac{x+y+z}{2}-z=\frac{x+y-z}{2}\)  (3)

Từ (2)và (3) có: \(\left(\frac{x+y-z}{2}\right)^2=yz\) khai triển và rút gọn t được

\(x^2+y^2+z^2=2\left(xy+yz+xz\right)\)

Thay vào (1) => \(x^2+y^2+z^2=\frac{a^2}{2}\)

Cách 2:

Giả sử EF cắt MP tại U và cắt MQ tại V

Ta có: \(\hept{\begin{cases}\widehat{MEF}=\widehat{MFN}=\widehat{FMV}\\\widehat{EMU}=\widehat{MEI}=\widehat{MFE}\end{cases}}\)

nên tam giác MEU đồng dạng với tam giác FMV => \(\frac{MU}{EU}=\frac{FV}{MV}\) hay \(MU\cdot MV=EU\cdot FV\) hay \(UV^2=BP\cdot QC\) (4)

Mặt khác \(PQ-UV=MQ-MV=QV=\frac{a}{2}\) (5)

Sử dụng (4);(5) để biến đổi biểu thức 

\(A=xy+yz+zx=BP\cdot PQ+PQ\cdot QC+QC\cdot BP=PQ\left(BP+QC\right)+UV^2\)

\(=PQ\left(EF-UV\right)+UV^2=PQ\cdot\frac{a}{2}-UV\left(PQ-UV\right)=PQ\cdot\frac{a}{2}-UV\cdot\frac{a}{2}=\frac{a}{2}\left(PQ-UV\right)\)\(=\frac{a^2}{4}\)

Thay vào (1) ta có: \(x^2+y^2+z^2=\frac{a^2}{2}\)

8 tháng 4 2020

Cách 3:

Gọi G là trọng tâm tam giác ABC đều. Xét điểm M nằm trên tròn tâm G bán kính GM=r

H và K lần lượt là chân đường vuông góc hạ từ G và M đến BC. Kẻ GS vuông góc với MK ( S thuộc MK)
Đặt PQ=2PK=2KQ=y

Giả sử K thuộc BH (nếu K thuộc HC thì cmtt)

\(BP^2+QC^2=\left(BH-PK-KH\right)^2+\left(CH-KQ+KH\right)^2\)

\(=\left(\frac{a}{2}-\frac{y}{2}-KH\right)^2+\left(\frac{a}{2}-\frac{y}{2}+KH\right)^2=2\left(\frac{a}{2}-\frac{y}{2}\right)^2+2KH^2\) (6)

Mặt khác \(KH^2=MG^2-MS^2=r^2-\left(MK-SK\right)^2=r^2-\left(\frac{y\sqrt{3}}{2}-\frac{a\sqrt{3}}{6}\right)^2=r^2-\frac{3}{4}\left(y-\frac{a}{3}\right)^2\) (7)

Từ (6) và (7) có: \(BP^2+PQ^2+QC^2=\frac{1}{2}\left(a-y\right)^2+y^2+2r^2-\frac{3}{2}\left(y-\frac{a}{3}\right)^2=\frac{a^2}{2}+2r^2\) (8)

Khi M thuộc đường tròn nội tiếp tam giác ABC, nghĩa ra \(r=MG=\frac{a\sqrt{3}}{6}\)thì

\(BP^2+PQ^2+QC^2=\frac{1}{2}MF\)

18 tháng 7 2021

Bạn tham khảo bài tại link :

https://olm.vn/hoi-dap/detail/244883081409.html

hoặc :

Câu hỏi của Vũ Nguyễn Phương Thảo - Toán lớp 8 - Học trực tuyến OLM

Hok tốt

18 tháng 7 2021

Trả lời :

Bạn vào hoc 24 có bài đấy