K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2017

Hình tam giác t1: Polygon A, B, C Đoạn thẳng c: Đoạn thẳng [A, B] Đoạn thẳng a: Đoạn thẳng [B, C] Đoạn thẳng b: Đoạn thẳng [C, A] Đoạn thẳng j: Đoạn thẳng [B, D] Đoạn thẳng k: Đoạn thẳng [A, D] Đoạn thẳng l: Đoạn thẳng [A, H] Đoạn thẳng n: Đoạn thẳng [D, K] Đoạn thẳng p: Đoạn thẳng [K, I] Đoạn thẳng q: Đoạn thẳng [E, H] Đoạn thẳng r: Đoạn thẳng [E, K] A = (2.07, 6.63) A = (2.07, 6.63) A = (2.07, 6.63) B = (-3.47, -9.98) B = (-3.47, -9.98) B = (-3.47, -9.98) C = (20.7, -9.89) C = (20.7, -9.89) C = (20.7, -9.89) Điểm H: Giao điểm đường của i, a Điểm H: Giao điểm đường của i, a Điểm H: Giao điểm đường của i, a Điểm I: Giao điểm đường của h, i Điểm I: Giao điểm đường của h, i Điểm I: Giao điểm đường của h, i Điểm D: Giao điểm đường của f, h Điểm D: Giao điểm đường của f, h Điểm D: Giao điểm đường của f, h Điểm K: Giao điểm đường của m, a Điểm K: Giao điểm đường của m, a Điểm K: Giao điểm đường của m, a Điểm E: I đối xứng qua a Điểm E: I đối xứng qua a Điểm E: I đối xứng qua a

a) Xét tam giác vuông BHI có \(\widehat{BIH}=90^o-\widehat{IBH}\)

Xét tam giác vuông ABD có \(\widehat{BDB}=90^o-\widehat{ABD}\)

Lại do BD là phân giác nên \(\widehat{IBH}=\widehat{ABD}\). Vậy thì \(\widehat{BIH}=\widehat{ADI}\)

Lại có \(\widehat{BIH}=\widehat{AID}\) (Hai góc đối đỉnh) nên \(\widehat{ADI}=\widehat{AID}\) hay tam giác AID cân tại A.

b) Do BD là phân giác nên DA = DK (Tính chất điểm thuộc tia phân giác)

Lại theo câu a, tam giác ADI cân tại A nên AD = AI. Vậy thì AI = DK

Ta có AH// DK (Cùng vuông góc với BC) nên \(\widehat{AID}=\widehat{IDK}\) (so le trong)

Vậy ta có \(\Delta AID=\Delta KDI\left(c-g-c\right)\)

c) Xét tam giác IEK có IH = HE nên KH là trung tuyến. Lại có KH cũng là đường cao. Vậy tam giác IEK cân tại K hay \(\widehat{HIK}=\widehat{HEK}\)

Lại có \(\widehat{HIK}=\widehat{IKD}\) (so le trong) nên \(\widehat{HEK}=\widehat{IKD}\)

Theo câu b, \(\Delta AID=\Delta KDI\Rightarrow\widehat{DAI}=\widehat{IKD}\)

Vậy nên \(\widehat{HEK}=\widehat{IAD}\)

Xét tứ giác ADKE có DK // AE nên nó là hình thang. Lại có \(\widehat{HEK}=\widehat{IAD}\) nên ADKE là hình thang cân.

(Có các cách chứng minh khác nhưng vì mới đầu lớp 8 nên cô sử dụng kiến thức liên quan đã học)

22 tháng 9 2017

Làm ơn giải cho mình, mình cần gấp lắmmmmmmm

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC a, Tứ giác BMNC là hình gì ? b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ? c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi . d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông 2, Cho tam giác ABC cân tai A...
Đọc tiếp

1, Cho tam giác ABC , M, N lần lượt là trung điểm của AB , AC

a, Tứ giác BMNC là hình gì ?

b, Gọi I là trung điểm của MN , đường thẳng AI cắt BC tại K . Tứ giác AMKN là hình gì ? Vì sao ?

c, Tam giác ABC cần điều kiện gì để AMKN là hình thoi .

d, Vói điều kiện trên của tam giác ABC . Vẽ KH vuông góc với AC tại H . Đường thẳng KH cắt MN tại E . Chứng minh tam giác AME vuông

2, Cho tam giác ABC cân tai A lấy điểm M trên cạnh AB . Từ M kẻ đường thẳng song song với AC cắt BC tại E

a, Chứng minh tam giác BME cân

b, Trên tia đối của tia CA lấy điểm N sao cho CN = BM . Tứ giác MCNE là hình gì ?

c, Gọi I là trung điểm của CE . Chứng minh M,N,I thẳng hàng

d, Từ M kẻ đường thẳng song song với BC cắt AC tại F . Từ N kẻ đường thẳng song song với BC cắt Me tại K . Chứng minh F,I,K thẳng hàng

 

1

Bài 1: 

a: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC

hay BMNC là hình thang

b: Xét ΔABK có MI//BK

nên MI/BK=AM/AB=1/2(1)

XétΔACK có NI//CK

nên NI/CK=AN/AC=1/2(2)

Từ (1)và (2) suy ra MI/BK=NI/CK

mà MI=NI

nên BK=CK

hay K là trug điểm của BC

Xét ΔABC có 

K là trung điểm của BC

M là trung điểm của AB

Do đó: KM là đường trung bình

=>KM//AN và KM=AN

hay AMKN là hình bình hành

1 tháng 2 2018
giúp mk nhé
1 tháng 2 2018

ABCDEMNEFIa,Ta có ΔABC cân ở góc A => góc ABC=góc ACB =180(đ)BAC2(1)

Ta có BD=CE(gt);AB=AC(gt)

mà AB+BD=AD và AC+CE=AE

=> AD=AE

=>ΔADE cân tại A ( Có hai góc bằng nhau)

=>góc ADE= góc AED=(180 độ - DAE) :2 (2)

Từ (1) và (2) => góc ABC= góc ADE=góc ACB=góc AED

mà góc ABC và góc ADE ở vị trí đồng vị

=>BC // DE(đpcm)

b)ta có góc ABC= góc MBD (đối đỉnh )

góc ACB= góc NCE( đối đỉnh )

mà Góc ABC=Góc ACB => góc MBD= góc NCE

Xét hai tam giác vuông ΔBMD và ΔCNE

có BD=CE (gt)

góc MBD= góc NCE (c/m trên)

=>ΔBMD=ΔCNE(Cạnh huyền - Góc nhọn)

=> DM=EN(Hai cạnh tương ứng)

c) Gọi giao điểm của AM và BI là E

giao điểm của AN và CI là F

Vì ΔBMD=ΔCNE( chứng minh trên ) =>BM=CN( Hai cạnh tương ứng)

Ta có : Góc ABC= Góc ACB ( gt)

mà Góc ABC + Góc ABM=180 độ ( kề bù)

và Góc ACB+góc ACN= 180 độ ( kề bù)

=>Góc ABM=góc ACN

Xét ΔABM VÀ ΔACN có:

AB=AC(gt)

Góc ABM=Góc ACN(cmt)

BM=CM ( cmt)

=> ΔABM=ΔACN(cgc)

=> Góc AMB=Góc ANC (hai góc tương ứng )

=> ΔAMN Cân ở A ( có hai góc bằng nhau) (đpcm)

D,(hơi dài )

ta có tam giác AMN cân ở A=> AM=AN( hai cạnh bên) (3)

Xét hai tam giác vuông Tam giác EMB và tam giác FCN có:

Góc EMB=góc FNC (cmt)

MB=CN(cmt)

=> tam giác EMB= tam giác FNC ( cạnh huyền -góc nhọn)

=>EM=FN(hai cạnh tương ứng ) (4)

Ta có (3) (4) mà AE+EM=AM và AF+FN=AN

=> AE=AF

Xét hai tam giác vuông tam giác AEI và tam giác AFI có

AI cạnh chung

AE=AF(cmt)

=> tam giác AEI = Tam giác AFI (cạnh huyền-cạnh góc vuông)

=>Góc AIE=Góc AIF( góc tương ứng ) (10)

ta có góc EBM+MBD=góc EBD= góc ABI (đối đỉnh)(5)

góc FCN+NCE= Góc FCE= góc ACI( đối đỉnh )(6)

mà góc EBM= góc FCN (cmt)(7)

góc MDB=góc NCE(gt) (8)

từ (5)(6)(7)(8)=> góc ABI = góc ACI (9)

từ (9) (10)=> góc BAI=góc CAI ( tổng 3 góc của một tam giác ) (đpcm)

Chúc bạn học giỏi nha Thiên Yết >.<