K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2017

bn cho nhìu wá

13 tháng 8 2017

@Hoàng Thị Tuyết Nhung bạn làm giúp mình câu 1 thôi nha

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :a) BH song song CIb) BH = AIc) Tam giác HMI vuông cân2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BCa) CM : Tam giác AMB = Tam giác AMCb) Trên tia đối của tia MA lấy điểm N sao cho M là...
Đọc tiếp

1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :

a) BH song song CI

b) BH = AI

c) Tam giác HMI vuông cân

2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC

a) CM : Tam giác AMB = Tam giác AMC

b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC

c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.

3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE

a) CM : DE vuông góc BE

b) CM : BE là đường trung trực của AE.

c) Kẻ AH vuông góc BC. So sánh AH và EC

GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!

2
7 tháng 8 2020

KHÔNG THẤY HÌNH THÌ VÀO THỐNG KÊ HỎI ĐÁP NHA

A) VÌ \(BH\perp AD\Rightarrow\widehat{BHA}=90^o\)

         \(CI\perp AD\Rightarrow\widehat{CID}=90^o\)

\(\Rightarrow\widehat{BHA}=\widehat{CID}=90^o\)hay \(\widehat{BHI}=\widehat{CIH}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU 

=> BH // CI (ĐPCM)

B) 

XÉT \(\Delta ABC\)VUÔNG TẠI A 

\(\Rightarrow\widehat{A}=90^o\)hay \(\widehat{BAH}+\widehat{HAC}=90^o\left(1\right)\)

XÉT \(\Delta AHB\)VUÔNG TẠI H

\(\Rightarrow\widehat{H}=90^o\)hay \(\widehat{BAH}+\widehat{ABH}=180^o-90^o=90^o\left(2\right)\)

từ (1) và (2) \(\Rightarrow\widehat{HAC}=\widehat{ABH}\)

XÉT \(\Delta ABH\)\(\Delta CAI\)

\(\widehat{H}=\widehat{I}=90^o\)

AB = AC (gt)

\(\widehat{ABH}=\widehat{IAC}\)(CMT)

=>\(\Delta ABH\)=\(\Delta CAI\)(C-G-C)

=> BH = AI ( HAI CẠNH TƯƠNG ỨNG )

7 tháng 8 2020

Ai giúp mk vs ạ

8 tháng 1 2018

B C A D E M N I H K

a) Ta thấy \(\widehat{ECN}=\widehat{ACB}\)  (Hai góc đối đỉnh)

Tam giác ABC cân tại A nên \(\widehat{ACB}=\widehat{ABC}\Rightarrow\widehat{ECN}=\widehat{DBM}\)

Xét tam giác vuông BDM và CEN có:

BD = CE

\(\widehat{ECN}=\widehat{DBM}\)  (cmt)

\(\Rightarrow\Delta BDM=\Delta CEN\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow BM=CN\)   (Hai cạnh tương ứng)

b) Do \(\Delta BDM=\Delta CEN\Rightarrow MD=NE\)

Ta thấy MD và NE cùng vuông góc BC nên MD // NE 

Suy ra \(\widehat{DMI}=\widehat{ENI}\)   (Hai góc so le trong)

Xét tam giác vuông MDI và NEI có:

MD = NE

\(\widehat{DMI}=\widehat{ENI}\)

\(\Rightarrow\Delta MDI=\Delta NEI\)  (Cạnh góc vuông và góc nhọn kề)

\(\Rightarrow MI=NI\)

Xét tam giác KMN có KI là đường cao đồng thời trung tuyến nên KMN là tam giác cân tại K.

c) Ta có ngay \(\Delta ABK=\Delta ACK\left(c-g-c\right)\Rightarrow\widehat{ABK}=\widehat{ACK}\)    (1)  và BK = CK

Xét tam giác BMK và CNK có:

BM = CN (cma)

MK = NK (cmb)

BK = CK (cmt)

\(\Rightarrow\Delta BMK=\Delta CNK\left(c-g-c\right)\Rightarrow\widehat{MBK}=\widehat{NCK}\)   (2)

Từ (1) và (2) suy ra \(\widehat{ACK}=\widehat{NCK}\)

Chúng lại là hai góc kề bù nên \(\widehat{ACK}=\widehat{NCK}=90^o\)

Vậy \(KC\perp AN\)

16 tháng 9 2018

dvdtdhnsrthwsrh

1 tháng 7 2018

â)xét tam giác AMBvà tam giác AMC

AB=AC( gt)

AM chung

MB=MC ( M là trung điểm của BC )

=> tam giác AMB= tam giác AMC ( c.c.c)

=> góc AMB= góc AMC ( 2 góc tương ứng )

mà góc AMB+ góc AMC = 180O ( 2 GÓC KỀ BÙ )

=> góc AMB= góc AMC=90O

=> AM vuông góc với BC

b) xét tam giác ADF và tam giác ADE

DF=DE ( gt)

góc ADF= góc CDE ( 2 góc đối đỉnh )

AD=CD ( D là trung điểm của AC)

=> tam giác ADF = tam giác ADE ( c.g.c)

=> góc CAF= góc ACÊ ( 2 góc tương ứng ) mà chúng ở vị trí so le trong do AC cắt AF và CE

=.> AF// CE

1.Cho tam giác cân ABC có AB=AC.Trên tia đối của tia BA và CA lấy 2 điểm D và E sao cho BD=CE.a.Cm DE//BCb.Từ D kẻ DM vuông góc BC ,từ E kẻ EN vuông góc BC.Cm DM=ENc.Cm tam giác AMN là tam giác când.Từ B,C kẻ các đường vuông góc với AM ,chúng cắt nhau tại I .Cm AI là tia phân giác chung của 2 góc BAC và MAC.2.Cho tam giác cân ABC  có góc A = 45 độ,AB=AC,từ trung điểm I của cạnh AC kẻ đường vuông góc với AC...
Đọc tiếp

1.Cho tam giác cân ABC có AB=AC.Trên tia đối của tia BA và CA lấy 2 điểm D và E sao cho BD=CE.

a.Cm DE//BC

b.Từ D kẻ DM vuông góc BC ,từ E kẻ EN vuông góc BC.Cm DM=EN

c.Cm tam giác AMN là tam giác cân

d.Từ B,C kẻ các đường vuông góc với AM ,chúng cắt nhau tại I .Cm AI là tia phân giác chung của 2 góc BAC và MAC.

2.Cho tam giác cân ABC  có góc A = 45 độ,AB=AC,từ trung điểm I của cạnh AC kẻ đường vuông góc với AC cắt đường thẳng BC ở M .Trên tia đối của tia AM lấy điểm N sao cho AN=BM.CMR:

a. góc AMC=gócBAC

b.Tam giác ABM =tam giác CAN 

c.Tam giác MNC vuông góc cân ở C 

3.Cho đoạn thẳng AB và điểm C nằm giữa A và  B.Trên cùng một nửa mặt phẳng bờ AB vẽ 2 tam giác đều ACD và BCE ,Gọi M,N lần lượt  là trung điểm của AE và BD .CMR:

a. AE=BD

b. Tam giác CME=tam giác CNB

c. Tam giác MNE là tam giác đều

4.Cho tam giác ABC vuông cân tại A .Trên cạnh AB lấy điểm D,trên cạnh AC lấy điểm E sao cho AD=AE.Các đoạn thẳng vuông goác kẻ từ A và E với CD cắt BC ở G và H .Đoạn thẳng EH và AB cắt nhau ở M.Đoạn thẳng kẻ từ A vuông góc với BC cắt MH ở I.Cm:

a.Tam giác ACD=tam giác AME

b.Tam giác AGB=tam giác MIA

c. BG=GH

5.Cho tam giác ABC cân  ở A,trên cạnh BC lấy điểm D ,trên tia đối của tia CB lấy điểm E sao cho BD=CE.Từ D kẻ đường vuông góc với BC cắt ở A ,từ E kẻ đường vuông góc với BC cắt AC ở N.Cm:

a.MD=NE

b. MN cắt DE ở I .Cm I là trung điểm của DE.

c. TừC kẻ đường vuông góc với AC ,từ B kẻ đường vuông góc với AB ,chúng cắt nhau tại O .Cm AO là đường trung trực của BC.

 

 

giúp mk vs nha,mk cảm ơn nhju hjhj

 

 

1
20 tháng 7 2018

4,

a/ tgiác ACD và tgiác AME là hai tgiác vuông tại A. 
AD = AE (gt) 
góc(ADC) = góc (AEM) (góc có cạnh tương ứng vuông góc) 
=> tgiácACD = tgiácAME (g.c.g) 
b/ ta có: AG//EH (cùng vuông góc với CD) 
=> AG // IH 
mà gt => AI // GH 
vậy AGHI là hình bình hành 
=>AG = IH. 
mặt khác theo cm trên ta có: tgiác ACD = tgiác AME 
=> AM = AC = AB 
=> A là trung điểm BM, mà AI // BC 
=> AI là đường trung bình của tgiác MBH 
=> I là trung điểm của MH. 
vậy: IM = IH = AG 
có: AM = AB 
góc BAG = góc AMI (so le trong) 
=> tgiác AGB = tgiác MIA ( c.g.c) 
c/ có AG//MH, A là trung điểm BM 
=> AG là đường trung bình của tgiácBMH 
=> G là trung điểm BH 
hay BG = GH.

Bài 1:Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EMa) Chứng minh ( CM ) : tam giác ABM = tam giác ACMb) CM : AM vuông góc BCc) CM : tam giác AEH = tam giác CEMd) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm...
Đọc tiếp

Bài 1:

Cho góc nhọn xAy, trên tia Ax lấy điểm B, trên tia Ay lấy điểm C sao cho AB = AC. Gọi M là trung điểm của BC và E là trung điểm của AC, trên tia đối của tia EM lấy điểm H sao cho EH = EM

a) Chứng minh ( CM ) : tam giác ABM = tam giác ACM

b) CM : AM vuông góc BC

c) CM : tam giác AEH = tam giác CEM

d) Gọi D là trung điểm của AB. Từ B vẽ đường thẳng song song với AM, đường thẳng này cắt tia MD tại K. CM : ba điểm H, A, K thẳng hàng

 

Bài 2:

Cho tam giác ABC có góc B < 90 độ. Trên nửa mặt phẳng bờ BC chứa điểm A vẽ tia Bx khác BC, trên tia Bx lấy điểm D sao cho BD = BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA, trên tia By lấy E sao cho BE = BA

a) CMR : DA = EC

b) DA vuông góc EC

 

Bài 3:

Cho tam giác ABC vuông tại B và AC = 2AB. Kẻ phân giác AE ( E thuộc BC ) của góc A

a) CM : EA = EC

b) Tính góc A và góc C của tam giác ABC

 

GIÚP TỚ VỚI Ạ. TỚ ĐANG CẦN!!

4
6 tháng 1 2018

Bài 1:

K D A H E B M C

a) Xét tam giác ABM và tam giác ACM : AB=AC,AM chung ,BM=MC(vì M là trung điểm của BC gt)

\(\Rightarrow\Delta ABM=\Delta ACM\left(c.c.c\right)\)

b) Tam giác ABC có AB=AC nên tam giác ABC cân tại A

=> đường trung tuyến AM đồng thời là đường cao

Vậy AM vuông góc BC

c) Xét tam giác AEH và tam giác CEM : AE=EC,EH=EM,\(\widehat{AEH}=\widehat{CEM}\)(2 góc đối đỉnh)

\(\Rightarrow\Delta AEH=\Delta CEM\left(c.gc\right)\)

d) Ta có KB//AM(vì vuông góc với BM 

\(\Rightarrow\widehat{KBD}=\widehat{DAM}\)(2 góc ở vị trí so le trong)

Xét tam giác KDB và MDA (2 góc đối đỉnh)

\(\Rightarrow\Delta KDB=\Delta DAM\left(g.c.g\right)\)

\(\Rightarrow KD=DM\left(1\right)\)

Tam giác ABM vuông tại M có trung tuyến MD 

Nên : MD=BD=AD(2)

Từ (1) và (2) ta có : KD=DM=DB=AD

Tam giác KAM có trung tuyến ứng với cạnh KM là \(AD=\frac{AM}{2}\)

Nên : Tam giác KAM vuông tại A

Tương tự : Tam giác MAH vuông tại A

Ta có: Qua1 điểm A thuộc AM  có 2 đường KA và AH cùng vuông góc với AM 

Nên : K,A,H thẳng thàng

6 tháng 1 2018

Bài 2 : 

x D A B C E y

a) Ta có tam giác DAB=tam giác CEB(c.g.c)

Do : DA=CB(gt)

       BE=BA(gt)

       \(\widehat{DBA}=\widehat{CBE}\)(Cùng phụ \(\widehat{ABC}\))

=> DA=EC

b) Do tam giác DAB=tam giác CEB(ở câu a) 

=> \(\widehat{BDA}=\widehat{BCE}\Rightarrow\widehat{BDA}+\widehat{BCD}=\widehat{BCE}+\widehat{BCD}\)

Mà : \(\widehat{BDA}+\widehat{BCD}=90^0\)( Do Bx vuông góc BC) 

=> \(\widehat{BCE}+\widehat{BCD}=90^0\)

=> DA vuông góc với EC