K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2015

a) xét tứ giác ABCD:

BC CẮT AD TẠI O

O LÀ TRUNG ĐIỂM BC, O LÀ TRUNG ĐIỂM AD => TỨ GIÁC LÀ HBH

TỨ GIÁC LẠI CÓ GÓC A=90 => ABCD LÀ HÌNH CHỮ NHẬT

B) XÉT TAM GIÁC BOH VÀ TAM GIÁC COK:

GÓC H= GÓC K =90

OB=OC

2 GOC TẠI ĐỈNH O ĐỐI ĐỈNH = NHAU

=> 2 TAM GIÁC BẰNG NHAU (CH.GN) => OH=OK=> O LÀ TĐ HK

=> BHCK LÀ HBH (CẮT NHAU TẠI TĐ MỖI ĐG)= > BH=CK; BK=CH

C) XÉT TỨC GIÁC BMCN

ĐÃ CÓ BM//CN( BH//CK)

BN//MC (AB//CD) => BMCN LÀ HBH. O LÀ TRUNG ĐIỂM BC => CŨNG PHẢI LÀ TRUNG ĐIỂM MN => O,M,N THẲNG HÀNG

D) 

10 tháng 12 2016

ê cho hỏi nha, sao trên tia đối của tia BH thì tia BE bắt đầu từ B và B nằm giữa E,H chớ

30 tháng 7 2016

hỏi hình thì cũng phải vẽ hình đi chứ 

a: Xét ΔANM và ΔACB có 

AN/AC=AM/AB

\(\widehat{NAM}=\widehat{CAB}\)

Do đó: ΔANM\(\sim\)ΔACB

Suy ra: \(\widehat{ANM}=\widehat{ACB}\)

hay MN//BC

Xét tứ giác MNBC có MN//BC

nên MNBC là hình thang

mà MB=NC

nên MNBC là hình thang cân

b: Xét tứ giác ABCD có \(\widehat{BAD}+\widehat{BCD}=180^0\)

nên ABCD là tứ giác nội tiếp

Xét đường tròn ngoại tiếp tứ giác ABCD có

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB

\(\widehat{BDC}\) là góc nội tiếp chắn cung BC

mà \(sđ\stackrel\frown{AC}=sđ\stackrel\frown{BC}\)

nên \(\widehat{ADB}=\widehat{CDB}\)

hay DB là tia phân giác của góc ADC

Đề sai rồi bạn

17 tháng 9 2018

gọi M,N,P lần lượt là các trung điểm nha , mình ghi thiếu nha !