Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải
a)Vì BAIˆ=90o+ABCˆ(vì là góc ngoài của tam giác ABH)
Và EBCˆ=90o+ABCˆ.
=>BAIˆ=EBCˆ
Xét tam giác ABI và tam giác BEC có:
EB=AB(gt)
AI=BC(gt)
BAIˆ=EBCˆ(c/m trên)
=> Tam giác ABI bằng tam giác BEC(c.g.c)
b)Gọi giao điểm của IH và EC là K,giao điểm của IB và EC là O
Vì tam giác ABI=Tam giác BEC(c/m trên)=>IB=EC(hai cạnh tương ứng)
Và BIHˆ=ECBˆ(hai góc tương ứng)(1)
Và HKCˆ=EKIˆ(đđ)(2)
Mà HKCˆ+KCHˆ=90o(xét trong tam giác vuông KHC vuông tại H)(3)
=>Từ (1),(2) và (3)=>BIHˆ+EKIˆ=90o
Xét trong tam giác OIK có hai góc BIH và góc EIK=>IOCˆ=90o
hay IO vuông góc với EC hay IB vuông góc với EC.
c)Ta cũng dễ dàng c/m tương tự rằng IC vuông góc với BF theo c/m tương tự như câu b.
Vậy 3 đường thẳng IH,BF,CE đều là 3 đường cao của tam giác IBC,Vậy 3 đường này đồng quy theo tính chất.
a: Xét ΔABC vuông tại A và ΔABD vuông tại A có
AB chung
AC=AD
Do đó: ΔABC=ΔABD
Suy ra: ABC=ABD
b) Vì △ABC = △ABD
=> BC = BD và ˆABC=ˆABDABC^=ABD^
Xét tam giác △MBD và △MBC
Có MB: cạnh chung
MBD=MBC
BD = BC
=> △MBD = △MBC
a: Xét ΔABM và ΔACM có
AB=AC
AM chung
BM=CM
Do đó: ΔABM=ΔACM
b: Xét ΔMBA và ΔMCD có
MB=MC
\(\widehat{AMB}=\widehat{DMC}\)
MA=MD
Do đó: ΔMBA=ΔMCD
a/
Xét tg AMB và tg MNC có
MB=MC (giả thiết)
MA=MN (giả thiết)
\(\widehat{AMB}=\widehat{NMC}\) (góc đối đỉnh)
=> tg AMB = tg NMC (c.g.c)
b/ Nối A với I cắt BD tại M'
Xét tg ADE có
BE=BA (gt) => DE là trung tuyến của tg ADE
IE=ID (gt) => AI là trung tuyến của tg ADE
=> M' là trọng tâm của tg ADE => \(BM'=\dfrac{1}{3}BD\) (1)
Ta có
MB=MC (gt); MC=CD (gt) => MB=MC=CD
BD=MB+MC+CD
=> \(BM=\dfrac{1}{3}BD\) (2)
Từ (1) và (2) => \(M'\equiv M\)
=> A; M; I thẳng hàng
a: Xét ΔMAB và ΔMDC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)
MB=MC
Do đó: ΔMAB=ΔMDC
=>\(\widehat{MAB}=\widehat{MDC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AB//CD
b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có
MB=MC
\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)
Do đó: ΔEMB=ΔFMC
=>EM=FM
=>M là trung điểm của EF