K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2015

Giải
a)Vì BAIˆ=90o+ABCˆ(vì là góc ngoài của tam giác ABH)
Và EBCˆ=90o+ABCˆ.
=>BAIˆ=EBCˆ
Xét tam giác ABI và tam giác BEC có:
EB=AB(gt)
AI=BC(gt)
BAIˆ=EBCˆ(c/m trên)
=> Tam giác ABI bằng tam giác BEC(c.g.c)
b)Gọi giao điểm của IH và EC là K,giao điểm của IB và EC là O
Vì tam giác ABI=Tam giác BEC(c/m trên)=>IB=EC(hai cạnh tương ứng)
Và BIHˆ=ECBˆ(hai góc tương ứng)(1)
Và HKCˆ=EKIˆ(đđ)(2)
Mà HKCˆ+KCHˆ=90o(xét trong tam giác vuông KHC vuông tại H)(3)
=>Từ (1),(2) và (3)=>BIHˆ+EKIˆ=90o
Xét trong tam giác OIK có hai góc BIH và góc EIK=>IOCˆ=90o
hay IO vuông góc với EC hay IB vuông góc với EC.
c)Ta cũng dễ dàng c/m tương tự rằng IC vuông góc với BF theo c/m tương tự như câu b.
Vậy 3 đường thẳng IH,BF,CE đều là 3 đường cao của tam giác IBC,Vậy 3 đường này đồng quy theo tính chất.

15 tháng 12 2021

a: Xét ΔABC vuông tại A và ΔABD vuông tại A có 

AB chung

AC=AD

Do đó: ΔABC=ΔABD

Suy ra: ABC=ABD

15 tháng 12 2021

b) Vì △ABC = △ABD

=> BC = BD và ˆABC=ˆABDABC^=ABD^

Xét tam giác △MBD và △MBC  

Có MB: cạnh chung 

MBD=MBC

BD = BC

=> △MBD = △MBC

a: Xét ΔABM và ΔACM có 

AB=AC

AM chung

BM=CM

Do đó: ΔABM=ΔACM

b: Xét ΔMBA và ΔMCD có 

MB=MC

\(\widehat{AMB}=\widehat{DMC}\)

MA=MD

Do đó: ΔMBA=ΔMCD

14 tháng 8 2023

A B C M D E N I

a/

Xét tg AMB và tg MNC có

MB=MC (giả thiết)

MA=MN (giả thiết)

\(\widehat{AMB}=\widehat{NMC}\) (góc đối đỉnh)

=> tg AMB = tg NMC (c.g.c)

b/ Nối A với I cắt BD tại M'

Xét tg ADE có

BE=BA (gt) => DE là trung tuyến của tg ADE

IE=ID (gt) => AI là trung tuyến của tg ADE

=> M' là trọng tâm của tg ADE => \(BM'=\dfrac{1}{3}BD\) (1)

Ta có

MB=MC (gt); MC=CD (gt) => MB=MC=CD

BD=MB+MC+CD

=> \(BM=\dfrac{1}{3}BD\) (2)

Từ (1) và (2) => \(M'\equiv M\)

=> A; M; I thẳng hàng

 

 

 

a: Xét ΔMAB và ΔMDC có

MA=MD

\(\widehat{AMB}=\widehat{DMC}\)(hai góc đối đỉnh)

MB=MC

Do đó: ΔMAB=ΔMDC

=>\(\widehat{MAB}=\widehat{MDC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AB//CD

b: Xét ΔEMB vuông tại E và ΔFMC vuông tại F có

MB=MC

\(\widehat{EMB}=\widehat{FMC}\)(hai góc đối đỉnh)

Do đó: ΔEMB=ΔFMC

=>EM=FM

=>M là trung điểm của EF