Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì M là trung điểm của BC nên AM là đường trung tuyến của tam giác ABC(1)
Mặt khác ta lại có AM là phân giác của góc A (gt)(2)
Từ (1) và (2) =>tam giác ABC là tam giác cân tại A (đpcm)
b) vì tam giác ABC cân tại A (cm câu a)=> AM là trung tuyến đồng thời là đường cao của ABC
Áp dụng đly Py-ta-go trong tam giác MAB ta có:
AM^2 + MB^2 = AB^2
<=> 35^2 + MB^2 = 37^2
<=>MB^2 = 37^2 - 35^2 = 144
=> MB = 12
Vì M thuộc BC => MB +MC =BC
hay 2MB = BC =>BC = 12x2 = 24
a,tam giác AMB và tam giác AMCcó:
góc BMA= góc CMA (gt)
BM=CM(gt)
gócBAM=góc CAM(gt)
suy ra,tam giác AMB=AMC(g.c.g) suy raAB=AC(2 cạnh t\ứng) hay tam giac ABC cân tại A
B,BC=24(cm theo định lí py-ta-go)
Nếu AM là đg phân giác , đg trung tuyến thì tam giác ABC vuông tại A
→AM là đg cao ,đg trung trực
BC2= AB2 + AC2
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
Do đó: ΔAMB=ΔAMC
b: Ta có: ΔABC cân tại A
mà AM là trung tuyến
nên AM là đường cao
BC=12cm nên BM=6cm
=>AM=8(cm)
c: I cách đều ba cạnh nên I là giao điểm của ba đường phân giác
=>AI là phân giác của góc BAC
mà AM là phân giác của góc BC
nên A,I,M thẳng hàng
bạn tự vẽ hình nha
a) trong tam giác ABC có AM vừa là phân giác vừa là trung tuyến
=> tam giác ABC cân ( theo tính chất trong tam giác cân)
b) trong tam giác cân đường trung tuyến cũng đồng thời là đường phân giác,đường cao, đường trung trực
xét tam giác ABM có \(\widehat{AMB}=90^O\)( AM là đường cao)
theo định lí pitago ta có
\(AM^2+BM^2=AB^2\)
=> \(BM^2=AB^2-AM^2\)
=> 372-352=BM2=144
=> BM=\(\sqrt{144}=12\)
mà M là trung điểm BC ( tính chất trong tam giác cân)
=> BC=2.BM=2.12=24
AM là trung tuyến \(\Rightarrow\) M1=M2=90o
vì AM là phân giác\(\Rightarrow\) A1=A2
xét tam giác AMB và AMC
cạnh AM chung
A1=A2
M1=M2=90o
\(\Rightarrow\) AMB=AMC(g.c.g)
\(\rightarrow\) AB=AC(2 cạnh tương ứng)
vậy tam giác ABC cân tại A
b) vì M1 vuông
ta có AB2= AM2+BM2( định lí pi-ta-go)
vì AB=37,AM=35
\(\Rightarrow\) 372= 352+BM2
MB2= 372-352
MB2=144
MB=12 cm
chúc bạn học tốt(like mình nha)
Gọi chiều dài phần còn lại là x(m)
\(\Rightarrow\)Phần gãy là 9-x(m)
Áp dụng định lí Pitago ta có :x2+ 32=(9-x)2
\(\Rightarrow\)x2+9=(9-x)(9-x)
\(\Rightarrow\)x2+9=81-18x+x2
\(\Rightarrow\)18x=81-9=72\(\Rightarrow\)x=72:18=4 m
Vậy điểm gãy cách gốc 4m
Chúc bn học tốt nha!!!!!!!!
a) Mk cm trường hợp = nhau c.c.c nhé ! trường hợp c.g.c cũng có thể làm đó bn
Do tam giác ABC cân tại A => AB=AC
\(\widehat{B}=\widehat{C}\)
Do AM là đường trung tuyến ứng vs cạnh BC => BM=CM
Xét tam giác ABM và tam giác ACM có :
AB = AC ( cm trên )
AM là cạnh chung
BM=CM ( cm trên )
nên tam giác ABM = tam giác ACM
b) Do tam giác ABC cân tại A và có AM là đường trung tuyến => AM cũng là đường trung trực của tam giác ABC ( theo t/c tam giác cân )
( hoặc bn cũng có thể cm cách khác nhưng dài hơn , cách này ngắn nhất đó ! )
hình tự vẽ
a, Xét t/g ABM và t/g ACM có:
BM = MC (gt)
góc BAM = góc CAM (gt)
AM chung
=> t/g ABM = t/g ACM (c.g.c)
=> AB = AC
=> t/g ABC cân tại A
b, Vì t/g ABM = t/g ACM (cmt) => góc AMB = góc AMC
Mà góc AMB + góc AMC = 180 độ (kề bù)
=> góc AMB = góc AMC = 90 độ
=> AM _|_ BC
=> t/g ABM vuông tại M
Áp dụng đlý pytago vào t/g ABM vuông tại M ta có:
AM^2 + BM^2 = AB^2
=> BM^2 = AB^2 - AM^2
=> BM^2 = 37^2 - 35^2
=> BM^2 = 144
=> BM = 12 cm
Có: BM = CM
=> BM = CM = 12cm
=> BC = BM+CM = 12+12 = 24 cm
Xét\(\Delta\)AMB &\(\Delta\)AMC có:
BM=CM(AM là đg trung tuyến )
Góc BAM= góc CAM(AM là tia pg của góc A)
AM là cạnh chung
=>\(\Delta\)AMB=\(\Delta\)AMC(c.g.c)
=>AB=AC(2 cạnh tương ứng)
=>\(\Delta\)ABC cân tại A
b) theo a:\(\Delta\)AMB=\(\Delta\)AMC
=>góc AMB= góc AMC(2 góc tương ứng)
ta có: góc AMC+ góc AMB=180 độ(2 góc kề bù )
=>góc AMB+ góc AMB=180ĐỘ
=>góc AMB= góc AMC=90 độ
Xét \(\Delta\)AMB vuông tại M
=>AB^2=AM^2+BM^2(định lí pytago)
=>37^2=BM^2+35^2
=>BM^2=37^2-35^2=144=12^2
=>BM=12
=>CM=12
ta có:BC+BM+CM=12+12=24