Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tự vẽ hình.
a) Xét tam giác OAB có AB // CD
⇒AOOC=OBOD=ABDC⇒12OC=93=18DC⇒AOOC=OBOD=ABDC⇒12OC=93=18DC ( Hệ quả định lý Ta - lét ) (1)
=> OC = 4cm, DC = 6cm
Vậy OC = 4cm và DC = 6cm
b) Xét tam giác FAB có DC // AB
⇒FDAD=FCCB⇒FD.BC=FC.AD⇒FDAD=FCCB⇒FD.BC=FC.AD ( ĐPCM )
c) Theo (1), ta đã có:
OAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBDOAOC=OBOD⇒OAOA+OC=OBOB+OD⇒OAAC=OBBD (2)
Vì MN // AB mà AB // DC => MN // DC
Xét tam giác ADC có MO// DC
⇒MODC=AOAC⇒MODC=AOAC ( Hệ quả định lý Ta - lét ) (3)
CMTT : ONDC=OBDBONDC=OBDB (4)
Từ (2), (3) và (4) => MODC=NODC⇒MO=NOMODC=NODC⇒MO=NO ( ĐPCM )
a: AD/AB=3/4
AE/AC=3/4
b: Xét ΔADE và ΔABC có
AD/AB=AE/AC
góc A chung
=>ΔADE đồng dạng vơi ΔABC
a: Xét ΔACD và ΔABE có
\(\dfrac{AC}{AB}=\dfrac{AD}{AE}\left(\dfrac{20}{15}=\dfrac{8}{6}=\dfrac{4}{3}\right)\)
\(\widehat{CAD}\) chung
Do đó: ΔACD~ΔABE
b: Ta có: ΔACD~ΔABE
=>\(\widehat{ACD}=\widehat{ABE}\) và \(\widehat{AEB}=\widehat{ADC}\)
Xét ΔHDB và ΔHEC có
\(\widehat{HBD}=\widehat{HCE}\)
\(\widehat{DHB}=\widehat{EHC}\)(hai góc đối đỉnh)
Do đó: ΔHDB~ΔHEC
=>\(\dfrac{HD}{HE}=\dfrac{HB}{HC}\)
=>\(HD\cdot HC=HB\cdot HE\)
c: Ta có: AD+DB=AB
=>DB=15-8=7(cm)
Ta có: AE+EC=AC
=>EC+6=20
=>EC=14(cm)
Xét ΔADE và ΔACB có
\(\dfrac{AD}{AC}=\dfrac{AE}{AB}\left(\dfrac{8}{20}=\dfrac{6}{15}=\dfrac{2}{5}\right)\)
\(\widehat{A}\) chung
Do đó: ΔADE~ΔACB
=>\(\widehat{ADE}=\widehat{ACB}\)
mà \(\widehat{ADE}=\widehat{FDB}\)
nên \(\widehat{FDB}=\widehat{FCE}\)
Xét ΔFDB và ΔFCE có
\(\widehat{FDB}=\widehat{FCE}\)
\(\widehat{F}\) chung
Do đó: ΔFDB~ΔFCE
=>\(\dfrac{S_{FDB}}{S_{FCE}}=\left(\dfrac{BD}{CE}\right)^2=\dfrac{1}{4}\)
=>\(S_{FCE}=4\cdot S_{FDB}\)
Sửa đề: Tam giác ABC vuông tại A. Câu c. C/m IB.AD=IC.AE
a.
Ta có:
\(\dfrac{AE}{AB}=\dfrac{6}{15}=\dfrac{2}{5};\dfrac{AD}{AC}=\dfrac{8}{20}=\dfrac{2}{5}\)
\(\Rightarrow\dfrac{AE}{AB}=\dfrac{AD}{AC}\)
Xét tam giác ABC và tam giác AED,có:
\(\dfrac{AE}{AB}=\dfrac{AD}{AC}\) ( cmt )
\(\widehat{A}:chung\)
Vậy tam giác ABC dồng dạng tam giác AED ( c.g.c )
b.
Áp dụng định lý pitago vào tam giác vuông ABC, có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow BC=\sqrt{15^2+20^2}=\sqrt{625}=25cm\)
Ta có: tam giác ABC dồng dạng tam giác AED ( c.g.c )
\(\Rightarrow\dfrac{AD}{AC}=\dfrac{DE}{BC}\)
\(\Leftrightarrow\dfrac{2}{5}=\dfrac{DE}{25}\)
\(\Leftrightarrow5DE=50\)
\(\Leftrightarrow DE=10cm\)
c.Áp dụng t/c đường phân giác góc A, ta có:
\(\dfrac{AB}{AC}=\dfrac{IB}{IC}\)
Mà \(\dfrac{AB}{AC}=\dfrac{AE}{AD}\) ( 2 tam giác đồng dạng )
\(\Rightarrow\dfrac{AE}{AD}=\dfrac{IB}{IC}\)
\(\Leftrightarrow IB.AD=IC.AE\)
bạn kiểm tra lại đề nhé