K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

Xét tam giác AED Và Tam giác ABC có  : Góc A chung và \(\frac{AE}{AB}=\frac{6}{15}=\frac{2}{5},\frac{AD}{AC}=\frac{8}{20}=\frac{2}{5}\) suy ra tam giác AED đồng dạng với tam giác ABC (cgc)  suy ra \(S_{AED}:S_{ABC}=\left(\frac{AE}{AB}\right)^2=\left(\frac{2}{5}\right)^2=\frac{4}{25}\)

25 tháng 4 2021

Tỉ lệ dt hai∆ =bình phương của hệ số tỉ lệ

a: Xét ΔABD và ΔACE có

AB/AC=AD/AE
góc A chung

Do đó: ΔABD\(\sim\)ΔACE

b: ta có: ΔABD\(\sim\)ΔACE

nên \(\dfrac{S_{ABD}}{S_{ACE}}=\left(\dfrac{AB}{AC}\right)^2=\left(\dfrac{5}{7}\right)^2=\dfrac{25}{49}\)

23 tháng 2 2022

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

a) Trong tam giác ABC, ta có: AD là đường phân giác của:

\(\dfrac{DB}{DC}\)=\(\dfrac{AB}{AC}\)

Mà AB = 15cm và AC = 20cm ( gt )

Nên \(\dfrac{DC}{DB}\)=\(\dfrac{15}{20}\)

\(\dfrac{DB}{DB+DC}\)=\(\dfrac{15}{15+20}\)( Tính chất tỉ lệ thức đã học ở lớp 7 )

\(\dfrac{DB}{BC}\)=\(\dfrac{15}{35}\)⇒DB=\(\dfrac{15}{35}\).BC=\(\dfrac{15}{35}\).25=\(\dfrac{75}{5}\)(cm)

b) Kẻ AH⊥BC

Ta có:\(S_{ABD}\)=\(\dfrac{1}{2}\)AH.BD

\(S_{ACD}\)=\(\dfrac{1}{2}\)AH.CD

\(\dfrac{S_{ABD}}{S_{ACD}}\)=\(\dfrac{\dfrac{1}{2}AH.BD}{\dfrac{1}{2}AH.CD}\)=\(\dfrac{BD}{DC}\)

Mà \(\dfrac{DB}{DC}\)=\(\dfrac{15}{12}\)=\(\dfrac{3}{4}\)

\(\dfrac{S_{ABD}}{S_{ACD}}\)=\(\dfrac{3}{4}\)(đpcm)

 

a:

Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=15^2+20^2=625\)

=>\(BC=\sqrt{625}=25\left(cm\right)\)

Ta có: ΔABC vuông tại A

=>\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}\cdot15\cdot20=150\left(cm^2\right)\)

Xét ΔABC có AD là phân giác

nên \(\dfrac{BD}{CD}=\dfrac{AB}{AC}\)

=>\(\dfrac{BD}{CD}=\dfrac{3}{4}\)
=>\(\dfrac{CD}{BD}=\dfrac{4}{3}\)

=>\(\dfrac{CD+BD}{BD}=\dfrac{4+3}{3}\)

=>\(\dfrac{BC}{BD}=\dfrac{7}{3}\)

=>\(BD=\dfrac{3}{7}BC\)

=>\(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}\)

b: Vì I là trung điểm của BC

nên \(S_{ABI}=\dfrac{1}{2}\cdot S_{ABC}\)

=>\(\dfrac{S_{ABD}}{S_{ABI}}=\dfrac{3}{7}:\dfrac{1}{2}=\dfrac{6}{7}\)

c: \(S_{ABD}=\dfrac{3}{7}\cdot S_{ABC}=\dfrac{3}{7}\cdot140=60\left(cm^2\right)\)

\(S_{ABI}=\dfrac{7}{6}\cdot S_{ABD}=\dfrac{7}{6}\cdot60=70\left(cm^2\right)\)

ta có: \(S_{ABD}+S_{AID}=S_{ABI}\)

=>\(S_{AID}+60=70\)

=>\(S_{AID}=10\left(cm^2\right)\)