\(\frac{1}{2}\) AB. E là trung đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

A C H B E F D

11 tháng 6 2019

Cậu tự vẽ hình nhé

a, kẻ MK vuông BC, NG vuông BC

Tam g ABC cân => g ABC= g ACB 

Lại có g ACB = g GCN (dd)

=> g GCN = g ABC=g MBK

Xét tg MBK và tg NCG 

g MKB= g NGC =90° 

g MBK = g NCG (cmt)

MB= CN(gt)

=> tg MBK= tg NCG ( ch-gn)

=> MK=NG (2 cạnh tương ứng)

Vì MK vuông BC, NG vuông BC => NG// MK 

=> g GNM = g KMN ( so le trong )

Xét tg MKD VÀ TG NGD

g MKD = g DGN = 90°

g KMD = gDNG ( cmt)

Mk= GN (cmt)

=> tg MKD = tg NGD (_cgv-gn)

=> MD= ND (2 ctu)

=> D là td MN ( dpcm)

11 tháng 6 2019

Xét tam giác cân ABC , AH là đường cao => AH là trung trực 

Lại có E thuộc AH => EC= EB 

Xét tg ABE và tg ACE

AB=AC (tg ABC cân)

BE= EC (cmt)

AE cạnh chung 

=> tg ABE = tg ACE (ccc)

=> g ABE = g ACE ( 2 góc tương ứng)(1)

Lại có DE là trung trực MN => ME = NE

Xét tg MBE và tg NCE

MB = NC ( gt)

ME = NE (cmt)

BE = CE (cmt)

=> tg MBE = tg NCE (ccc)

=> g ECN = g EBM (2 góc t u ) (2)

Từ 1), 2) => g ECA = g ECN 

Lại có 2 góc này bù nhau

=>g ACE= 90°= g ABE

Xét tg ABE vuông

+ theo đl pytago:

=> AE = √( ab2+bE2)= √( 62+4,52)= 7,5 (cmcm)

+ BH là đcao, theo hệ thức lượng trong tg vuông

=>+ AB2= AH.AE => AH= 62:7,5=4,8 (cmcm)

+ 1/(BH2)= 1/(AB2)+1/(BE2) => BH = √(1:( (1/62)+(1/4,52))= 3,6(ccmcm)

=> BC= 3,6.2= 7,2 (cm)

=> dt tg ABC có đcao AH là 7,2.4,8.1/2= 28,08(cm2)

Vậy S tg ABC = 28,08 cm2

25 tháng 8 2020

\(\left(1-a+a^2\right)\left(1-b+b^2\right)=1-b+b^2-a+ab-ab^2+a^2-a^2b+a^2b^2.\)

\(=\frac{2-2a-2b+2b^2+2ab+2a^2-2ab\left(a+b\right)+2a^2b^2}{2}\)\(=\frac{\left(a-b\right)^2+1+a^2b^2+\left(1-a\right)^2\left(1-b\right)^2}{2}\ge\frac{1+a^2b^2}{2}\)

Tương Tự : \(\left(1-c+c^2\right)\left(1-d+d^2\right)\ge\frac{1+c^2d^2}{2}\)

26 tháng 8 2020

(1-a+a2) (1-b+b2) = 1-b+b2-a+ab-ab2+a2-a2b+a2b2.

=2-2a-2b+2b2+2ab+2a2-2ab(a+b)+2a2b2                                                                                                                                                                                   =(a-b)2+1+a2b2+(1-a)2(1-b)2> 1+a2b2                                                                                                                                                                                         2                          2                                                                                                                                                       Tương Tự:(1-c+c2) (1-d+d2> 1+c2d2                                                                                                                                                                                                                                                         2                                                                                                                                             

Câu b
Từ N kể đường thẳng song song với BC cắt đường thẳng AB tại K => KBCN là hình thang (*) 
Lại có góc BKN = ABC ( đồng vị), CNK = ACB (đồng vị) và ABC = ACB nên BKN = CNK (**) 
từ (*) và (**) => KBCN là hình thang cân => BK = CN = BM. 
=> AK = AN nên tam giác AKN cân tại A => AO là đường trung trực của KN => OK = ON (4) 
vì OI là trung trực của MN nên OM = ON (5) 
từ (4) và (5) => OM = OK => tam giác OMK cân tại O lại có BM = BK (cmt) nên OB v^g góc với AB. 
Tam giác ABO và Tam giác ACO có: AB = ÃC, BAO = CAO (gt) , AO chung nên tam giác ABO = tam giác ACO (c,g,c) => ACO = ABO = 90độ. hay OC vuông góc với AC.

22 tháng 1 2019

xét tam giác BDC có góc BDC+ góc C+ góc DBC=180 độ 

mà góc CDB+ góc ACB=90 độ 

suy ra góc DBC =90 độ

suy ra tam giác DBC vuông tại B có đường cao AB( vì tam giác ABC vuông tại A)

Áp dụng hệ thức lượng vào tam giác DBC ta có:

1/BC^2+1/BD^2=1/AB^2( ĐPCM)

11 tháng 10 2016

Dựng đường cao từ đỉnh C xuống AB cắt AH tại G

=> G là trọng tâm của tam giác ABC (Trong tam giác đều đường cao đồng thời là đường trung tuyến, đường phân giác...)

=> HG=AH/3 mà HM=AH/3 => HG=HM 

Do CG là đường phân giác => ^ACG=^HCG=^ACB/2 = 60/2=30 (1)

Xét tam giác CMG có 

CH vuông góc với AH và HG=HM => tam giác CMG cân tại C

=> ^HCG=^HCM=30 (Trong tam giác cân đường cao đồng thời là đường phân giác) (2)

Từ (1) và (2) => ^ACG+^HCG+^HCM=^ACM=30+30+30=90 => tg ACM là tam giác vuông

b/ Xét tg vuông ACM có

\(MC^2=MH.MA\) (Bình phương 1 cạnh góc vuông = tích cạnh huyền với hình chiếu cạnh góc vuông đó trên cạnh huyền)

\(5^2=\frac{AM}{4}.AM=\left(\frac{AM}{2}\right)^2\Rightarrow\frac{AM}{2}=5\Rightarrow AM=10\)

\(AB^2=AM^2-MC^2=10^2-5^2=75\Rightarrow AB=5\sqrt{3}\)

c/ \(AB=AC=BC=5\sqrt{3}\) còn tính gì nữa?

23 tháng 8 2018

ý 1 câu a )

 có ED vuông góc BC  ; AH vuông góc BC  => ED//AH =>  tam giác CDE đồng dạng vs tam giác CHA  ( talet)      (1)

 xét tam giác CHA  và tam giác CAB  có CHA=CAB=90 độ ; C chung => tam giác CHA  đồng dạng vs tam giác CAB ( gg) (2)

  từ (1) và (2) =>tam giác CDE  đồng dạng tam giác CAB  (  cùng đồng dạng tam giác CHA )

 có tam giác CDE đồng dạng tam giác CAB  (cmt) => \(\frac{CE}{CB}=\frac{CD}{CA}\)

xét tam giác BAC  và tam giác ADC  có góc C chung và \(\frac{CE}{BC}=\frac{CD}{AC}\left(CMT\right)\) => tam giác BAC đồng dạng vs tam giác ADC (  trường hợp c-g-c) , mấy câu kia quên mịa nó r -.-

25 tháng 8 2018

thanks bạn

27 tháng 11 2021

a) Xét tam giác AHB và tam giác DHB có:
góc H = 90 độ
HB chung
AB=DB (gt)
=> tam gaics AHB = tam giác DHB ( cạnh huyền cạnh góc vuông)
=> AH = HD ( 2 cạnh tương ứng)
b) Chứng min htuowng tự có có:
tam giác AKC = tam giác EKC ( cạnh huyền - cạnh góc vuông)
=> AK = KE ( 2 cạnh tương ứng)
*) Xét tám giác ADE có:
AH = HD ( cmt)
AK = KE ( cmt)
=> HK alf đường trung bình của hình thang
=> HK//DE hay nói cách khác
HK // DB

27 tháng 11 2021

TL :

Đây nhé

Xin lỗi phải chờ lâu

#####

Uchi ha

sáuke

nighy

undefined

undefined