Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Gọi G là trọng tâm, M là trung điểm của BC
=>AG=2/3AM
BM+BE=EM
CM+CF=MF
mà BM=CM; BE=CF
nên EM=MF
=>M là trung điểm củaEF
Xet ΔAEF có
AM là trung tuyến
AG=2/3AM
=>G là trọng tâm của ΔAEF
b: G là trọng tâm cùa ΔAEF
=>N là trung điểm của AF
Xét ΔAEF có FM/FE=FN/FA
nên MN//AE và MN=1/2AE
Xét ΔGAE có GH/GA=GI/GE
nên HI//AE và HI=1/2AE
=>MN//HI và MN=HI
Kẻ trung tuyến AM của \(\Delta ABC\) và trên AM đặt \(AG=\frac{2}{3}AM\)
Xét \(\Delta GHI\) và \(\Delta GMN\) có : HG = \(\frac{1}{2}AG\) mà \(AG=\frac{2}{3}AM\)
nên \(HG=\frac{1}{2}.\frac{2}{3}AM=\frac{1}{3}AM;GM=\frac{1}{3}AM\)
Vậy HG = GM
tương tự ta có \(GI=CN=\frac{1}{3}EN;\widehat{HGE}=\widehat{NGM}\) (đối đỉnh)
\(\Rightarrow\Delta GHI=\Delta GMN\)
=> HI = MN ; \(\widehat{IHG}=\widehat{NMG}\) mà 2 góc này nằm ở vị trí so le trong => HI // MN