K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

A B C D E F

a) Xét hai tam giác vuông DEA và CFA có:

AD = AC (gt)

\(\widehat{DAE}=\widehat{CAF}\)  (Hai góc đối đỉnh)

\(\Rightarrow\Delta DEA=\Delta CFA\)  (Cạnh huyền góc nhọn)

\(\Rightarrow EA=FA\) hay A là trung điểm EF.

b) Xét tam giác DAF và CAE có:

DA = CA

AF = AE

\(\widehat{DAF}=\widehat{CAE}\) 

\(\Rightarrow\Delta DAF=\Delta CAE\left(c-g-c\right)\)

\(\Rightarrow\widehat{FDA}=\widehat{ECA}\)

Chúng lại ở vị trí so le trong nên DF // EC.

24 tháng 1 2018

lên lớp đi black chỉ hết cho

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng


Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF


Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE


Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0
Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAEBài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .a ) Chứng minh BD...
Đọc tiếp

Bài 5 : Cho \(\Delta ABC\) có AB = AC , lấy M là trung điểm của BC . Trên tia đối của tia BC lấy điểm D , trên tia đối của tia CB lấy điểm E sao cho BD = CE . Chứng minh :

b )\(\Delta ABD=\Delta ACE\)     a ) AM vuông góc với BC

 c )\(\Delta ACD=\Delta ABE\)      d ) AM là tia phân giác của góc DAE

Bài 6 : Cho tam giác ABC ( AC > AB ) . Tia phân giác của góc BAC cắt BC tại D. Trên cạnh AC lấy E sao cho AE = AB .
a ) Chứng minh BD = DE

b ) Kéo dài AB và DE cắt nhau tại K. Chứng minh góc AKD bằng góc ACD .

c ) Chứng minh \(\Delta KBE=\Delta CEB\)

d ) Tìm điều kiện của tam giác ABC để DE vuông góc với AC .

Bài 7 Cho tam giác ABC , P là trung điểm của AB . Đường thẳng qua P và song song với BC cắt AC ở đường thẳng qua Q và song song với AB cắt BC ở F. Chứng minh rằng :

a ) AP = QF

b ) \(\Delta APQ=\Delta QFC\)

c ) Q là trung điểm của AC

d ) Lấy điểm I thuộc tia đối của tia QP sao cho QI = QP . Chứng minh CI // AB

Bài 8 : Cho đoạn thẳng AB . Trên hai nửa mặt phẳng đối nhau bờ AB , kẻ tia Ax và By cùng vuông góc với AB . Trên tia Ax , By lần lượt lấy hai điểm C , D sao cho AC = BD .
a ) Chứng minh AD = BC

. b ) Chứng minh AD // BC .

c ) Gọi 0 là trung điểm của AB . Trên BC lấy điểm E , trên AD lấy điểm F sao cho CE = DF . Chứng minh ( là trung điểm của EF .

 

Mình đang cần gấp ạ

 

0
15 tháng 11 2019

Tham khảo

Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath

15 tháng 11 2019

mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((

19 tháng 12 2018

ai tra loi nhanh minh cho k.please

2 tháng 5 2017

bạn nào giúp mk vẽ hình đc không

27 tháng 2 2020

Xét ΔADE và ΔABC có :
AD = AB (gt)

góc DAE =góc BAC = 90 độ
AE = AC (gt)
Do đó : ΔADE = ΔABC(c − g − c)
⇒ DE = BC ( hai cạnh tương ứng )
b.
Ta có :
góc ADE =góc CDN ( hai góc đối đỉnh )
góc C= góc E
( vì ΔADE = ΔABC )
⇒ góc N = góc A 90đọ
Hay DE ⊥ BC
Vậy DE ⊥ BC

a: Xét ΔABC vuông tại A và ΔADE vuông tại A có

AB=AD

AC=AE

Do đó: ΔABC=ΔADE

b: Xét ΔAMD và ΔANB có

AM=AN

MD=NB

AD=AB

Do đó: ΔAMD=ΔANB

25 tháng 1 2018

A C B D E F M N P H I K O

Ta có: \(\Delta\)ABC đều, D\(\in\)AB, DE\(\perp\)AB, E\(\in\)BC

=> \(\Delta\)BDE có các góc với số đo lần lượt là: 300; 600; 900 => BD=1/2BE

Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)

=> BD=CE. 

Xét \(\Delta\)BDE và \(\Delta\)CEF: ^BDE=^CEF=900; BD=CE; ^DBE=^ECF=600

=> \(\Delta\)BDE=\(\Delta\)CEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD

Xét \(\Delta\)BDE và \(\Delta\)AFD: BE=AD; ^DBE=^FAD=600; BD=AF => \(\Delta\)BDE=\(\Delta\)AFD (c.g.c)

=> ^BDE=^AFD=900 =>DF\(\perp\)AC (đpcm).

b) Ta có: \(\Delta\)BDE=\(\Delta\)CEF=\(\Delta\)AFD (cmt) => DE=EF=FD (các cạnh tương ứng)

=> \(\Delta\)DEF đều (đpcm).

c) \(\Delta\)DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP

Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200 (Kề bù)

=> \(\Delta\)PDM=\(\Delta\)MFN=\(\Delta\)NEP (c.g.c) => PM=MN=NP => \(\Delta\)MNP là tam giác đều.

d) Gọi AH; BI; CK lần lượt là các trung tuyến của \(\Delta\)ABC, chúng cắt nhau tại O.

=> O là trọng tâm \(\Delta\)ABC (1)

Do \(\Delta\)ABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300

Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC

Xét 3 tam giác: \(\Delta\)OAF; \(\Delta\)OBD và \(\Delta\)OCE:

AF=BD=CE

^OAF=^OBD=^OCE      => \(\Delta\)OAF=\(\Delta\)OBD=\(\Delta\)OCE (c.g.c)

OA=OB=OC

=> OF=OD=OE => O là giao 3 đường trung trực \(\Delta\)DEF hay O là trọng tâm \(\Delta\)DEF (2)

(Do tam giác DEF đều)

Dễ dàng c/m ^OFD=^OEF=^ODE=300 => ^OFM=^OEN=^ODP (Kề bù)

Xét 3 tam giác: \(\Delta\)ODP; \(\Delta\)OEN; \(\Delta\)OFM:

OD=OE=OF

^ODP=^OEN=^OFM          => \(\Delta\)ODP=\(\Delta\)OEN=\(\Delta\)OFM (c.g.c)

OD=OE=OF (Tự c/m)

=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của \(\Delta\)MNP

hay O là trọng tâm \(\Delta\)MNP (3)

Từ (1); (2) và (3) => \(\Delta\)ABC; \(\Delta\)DEF và \(\Delta\)MNP có chung trọng tâm (đpcm).

27 tháng 1 2018

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC

=> ΔBDE có các góc với số đo lần lượt là: 300 ; 600 ; 900  

=> BD=1/2BE

Mà BD=1/3BA => BD=1/2AD => AD=BE

=> AB-AD=BC-BE (Do AB=BC)

=> BD=CE. 

Xét ΔBDE và ΔCEF: ^BDE=^CEF=900 ; BD=CE; ^DBE=^ECF=600 => ΔBDE=ΔCEF (g.c.g)

=> BE=CF

=> BC-BE=AC-CF => CE=AF=BD Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600 ; BD=AF => ΔBDE=ΔAFD (c.g.c) => ^BDE=^AFD=900  =>DF⊥AC (đpcm).

b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt)

=> DE=EF=FD (các cạnh tương ứng)

=> Δ DEF đều (đpcm).

c) Δ DEF đều (cmt)

=> DE=EF=FD. Mà DF=FM=EN=DP

=> DF+FN=FE+EN=DE+DP <=> DM=FN=EP

Lại có: ^DEF=^DFE=^EDF=600

=> ^PDM=^MFN=^NEP=1200  (Kề bù)

=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.

d) Gọi AH; BI; CK lần lượt là các trung tuyến của ΔABC, chúng cắt nhau tại O

=> O là trọng tâm ΔABC                                                                           (1)

Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác

=> ^OAF=^OBD=^OCE=300

Đồng thời là tâm đường tròn ngoại tiếp tam giác

=> OA=OB=OC

Xét 3 tam giác:

 ΔOAF; ΔOBD và ΔOCE: AF=BD=CE ^OAF=^OBD=^OCE     

=> ΔOAF=ΔOBD=ΔOCE (c.g.c) OA=OB=OC => OF=OD=OE

=> O là giao 3 đường trung trực Δ DEF hay O là trọng tâm Δ DEF                   (2)

(Do tam giác DEF đều) Dễ dàng c/m ^OFD=^OEF=^ODE=300

 => ^OFM=^OEN=^ODP (Kề bù)

Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM: OD=OE=OF ^ODP=^OEN=^OFM         

=> ΔODP=ΔOEN=ΔOFM (c.g.c) OD=OE=OF (Tự c/m) => OP=ON=OM (Các cạnh tương ứng)

=> O là giao 3 đường trung trực của ΔMNP hay O là trọng tâm ΔMNP             (3)

Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).