K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 7 2018

a)

Ta, giác ABC và tg AMN có :

AC=AN

AB=AM

BAC=MAN (2 góc đối đỉnh)

=> tg ABC= tg AMN (c.gc)

b)

Gọi X là giao điểm của AH và MN

tg ABC= tg AMN 

=> AMN=ABC

=> AMN + MAX = ABC + BAH ( MAX = BAH vì 2 góc dối đỉnh)

=> AXM = 90

=> AH vuông MN tại X

5 tháng 8 2017

Ta có hình vẽ:

A B C M N

Ta có:

AB = AM ( gt )

A1* = A2* ( 2 gđđ )

AC = AN  ( gt )

Do đó tam giác ABC = tam giác AMN

b) Ta có: tam giác ABC = tam giác AMN

=> BC = MN 

c) Có N* = C* ( tam giác ABC = tam giác AMN )

Mà N* và C* là hai góc so le trong

=> NM // BC

Chú ý: * là góc.

a: Xét ΔAHD có 

AN là đường cao

AN là đường trung tuyến

Do đó:ΔAHD cân tại A

mà AB là đường trung tuyến

nên AB là tia phân giác của góc HAD(1)

Xét ΔAHE có 

AM là đường cao

AM là đường trung tuyến

Do đó: ΔAHE cân tại A

mà AC là đường cao

nên AC là tia phân giác của góc HAE(2)

Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)

hay D,A,E thẳng hàng

b: Xét ΔHED có

M là trung điểm của HE

N là trung điểm của HD

Do đó: MN là đường trung bình

=>MN//ED

d: Xét ΔDHE có 

HA là đường trung tuyến

HA=DE/2

Do đó:ΔDHE vuông tại H

30 tháng 4 2020

huy dep trai