Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có hình vẽ:
A B C M N
Ta có:
AB = AM ( gt )
A1* = A2* ( 2 gđđ )
AC = AN ( gt )
Do đó tam giác ABC = tam giác AMN
b) Ta có: tam giác ABC = tam giác AMN
=> BC = MN
c) Có N* = C* ( tam giác ABC = tam giác AMN )
Mà N* và C* là hai góc so le trong
=> NM // BC
Chú ý: * là góc.
a: Xét ΔAHD có
AN là đường cao
AN là đường trung tuyến
Do đó:ΔAHD cân tại A
mà AB là đường trung tuyến
nên AB là tia phân giác của góc HAD(1)
Xét ΔAHE có
AM là đường cao
AM là đường trung tuyến
Do đó: ΔAHE cân tại A
mà AC là đường cao
nên AC là tia phân giác của góc HAE(2)
Từ (1) và (2) suy ra \(\widehat{DAE}=2\cdot\left(\widehat{BAH}+\widehat{CAH}\right)=2\cdot90^0=180^0\)
hay D,A,E thẳng hàng
b: Xét ΔHED có
M là trung điểm của HE
N là trung điểm của HD
Do đó: MN là đường trung bình
=>MN//ED
d: Xét ΔDHE có
HA là đường trung tuyến
HA=DE/2
Do đó:ΔDHE vuông tại H
a)
Ta, giác ABC và tg AMN có :
AC=AN
AB=AM
BAC=MAN (2 góc đối đỉnh)
=> tg ABC= tg AMN (c.gc)
b)
Gọi X là giao điểm của AH và MN
tg ABC= tg AMN
=> AMN=ABC
=> AMN + MAX = ABC + BAH ( MAX = BAH vì 2 góc dối đỉnh)
=> AXM = 90
=> AH vuông MN tại X