Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: Xét tứ giác BCDE có
A là trung điểm của BD
A là trung điểm của CE
Do đó: BCDE là hình bình hành
Suy ra: BE=CD
b: ta có: BCDE là hình bình hành
nên BE//CD
a) Xét \(\Delta EAB\) và \(\Delta DAC\) có :
\(AE=AC\) ( gt)
\(AB=AD\left(gt\right)\)
\(\widehat{EAB}=\widehat{DAC}\) ( đối đỉnh )
Do đó : \(\Delta EAB=\Delta CAD\) ( c-g-c)
\(\Rightarrow BE=CD\) ( cạnh tương ứng )
\(\Rightarrow\) \(\widehat{E_1}=\widehat{C_1}\) ( hai góc tương ứng )
b) Ta có : \(ME=\dfrac{1}{2}BE\) ( M là trung điểm của BE )
\(NC=\dfrac{1}{2}CD\) ( N là trung điểm của CD )
mà BE = CD ( cmt )
\(\Rightarrow ME=NC\)
Xét \(\Delta EAM\) và \(\Delta NAC\) có :
\(ME=NC\) (cmt)
\(AE=AC\) ( gt )
\(\widehat{E_1}=\widehat{C_1}\)
Do đó \(\Delta EAM=\Delta CAN\) ( c-g-c)
\(\Rightarrow\widehat{EAM}=\widehat{NAC}\) ( hai góc tương ứng )
Ta có : \(\widehat{EAN}+\widehat{NAC}=180^o\) ( hai góc kề bù )
hay \(\widehat{EAN}+\widehat{EAM}=180^o\) ( vì \(\widehat{EAM}=\widehat{NAC}\))
\(\Rightarrow\) ba điểm A , N , M thằng hàng (đpcm)
ABCDEMN11
E D A B C M N
a, Xét t/g ABE và t/g ADC có:
AB = AD (gt)
AE = AC (gt)
góc BAE = góc DAC (đối đỉnh)
Do đó t/g ABE = t/g ADC (c.g.c)
=> BE = CD (2 cạnh t/ứ)
b, Vì t/g ABE = t/g ADC => góc ABE = góc ADC (2 góc t/ứ)
Mà 2 góc này ở vị trí so le trong nên BE // CD
c, Vì BE = CD => \(\frac{BE}{2}=\frac{CD}{2}\) => BM = DN
Xét t/g AMB và t/g AND có:
BM = DN (cmt)
AB = AD (gt)
góc ABE = góc ADC (cmt)
Do đó t/g AMB = t/g AND (c.g.c)
=> AM = AN (2 cạnh t/ứ)
xét tam giác BAE và tam giác CAD có
EA=EC gt
gócEAB = góc CAD (2 góc đói đỉnh)
BA=AD gt
vậy tam giác BAE = tam giác CAD
b)Nối E với D ta có EA=EC
BA=BD
=> hai đường chéo cắt nhau tai trung điểm mõi đường là hình bình hành
vậy tứ giác CBED là HBH
=> EB//DC
C) ta có góc MAD+góc NAD =180 ĐỘ
vậy 3 điểm M,A,N thẳng hàng(đpcm)
Bạn kiểm tra lại đề nhé! Tia Ax nằm giữa hai tia AD và AC hay hai tia AB và AC
Tham khảo đề bài và lời giải tại link:
Câu hỏi của Chử Văn Dũng - Toán lớp 7 - Học toán với OnlineMath