K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 3 2019

Dễ chứng minh từ các hình bình hành to nhỏ khác nhau. Từ đó CM O là trung điểm AA(1).

Vậy \(A,O,A_1\)thẳng hàng

Câu a : Kẻ đường cao BH . Ta có :

\(S_{ABC}=\frac{1}{2}.BH.AC=\frac{1}{2}.AB.AC.\sin A\)(đpcm)

Câu b : \(\frac{S_{ABC}}{S_{ADE}}=\frac{\frac{1}{2}.AB.AC.\sin A}{\frac{1}{2}.AD.AE.\sin A}=\frac{AB.AC}{AD.AE}\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
22 tháng 8 2020

Hình vẽ:

Violympic toán 9

AH
Akai Haruma
Giáo viên
22 tháng 8 2020

Lời giải:

a) Ta có:

$\frac{S_{AMN}}{S_{AMC}}=\frac{AN}{AC}$

$\frac{S_{AMC}}{S_{ABC}}=\frac{AM}{AB}$

Nhân theo vế thu được:

$\frac{S_{AMN}}{S_{ABC}}=\frac{AN.AM}{AC.AB}$

b) 

Vì $AB=AC, AM=CN\Rightarrow AB-AM=AC-CN$ hay $BM=AN$

Do đó:

$\frac{S_{AMN}}{S_{ABC}}=\frac{AM.BM}{AB.AC}=\frac{AM.BM}{AB^2}$

Áp dụng BĐT AM-GM:
$AM.BM\leq \left(\frac{AM+BM}{2}\right)^2=\frac{AB^2}{4}$

$\Rightarrow \frac{S_{AMN}}{S_{ABC}}\leq \frac{AB^2}{4.AB^2}=\frac{1}{4}$

$\Rightarrow S_{AMN}\leq \frac{S_{ABC}}{4}$

Vậy $S_{AMN}$ max bằng $\frac{S_{ABC}}{4}$ khi $AM=BM$ hay $M$ là trung điểm của $AB$, kéo theo $N$ là trung điểm $AC$

Vậy......