Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b: Xét tứ giác ABCD có
AD//BC
AD=BC
Do đó: ABCD là hình bình hành
Suy ra: BA//CD
P/S 3 chữ hoa liên tiếp là góc :D
a,Ta có :\(AD//BC=>DAC=BCA\)
Xét Tam giác ABC và tam giác CDA
\(BC=DA\)(gt)
\(BCA=DAC\)(cmt)
\(CA\)cạnh chung
\(=>\Delta ABC=\Delta CDA\left(c-g-c\right)\)
b,Ta có : \(AD//BC=>ADB=CBD\)
Xét tam giác ABD và tam giác CDB
\(BC=AD\)(gt)
\(ADB=CBD\)(cmt)
\(BD\)cạnh chung
\(=>\Delta ABD=\Delta CDB\left(c-g-c\right)\)
c,Xét tam giác ODA và tam giác OBC
\(DBC=BDA\)(cm câu b)
\(AD=BC\)(gt)
\(DAC=ACB\)(cm câu a)
\(=>\Delta ODA=\Delta OBC\left(g-c-g\right)\)
Dùng hình của bạn Mai nhé.
Kẽ DP và EQ \(⊥\)HK tại P và Q.
Xét \(\Delta DPA\)và \(\Delta AHB\)có
\(\hept{\begin{cases}\widehat{DPA}=\widehat{AHB}=90\\DA=AB\\\widehat{PDA}=\widehat{HAB}\left(phu\widehat{PAD}\right)\end{cases}}\)
\(\Rightarrow\Delta DPA=\Delta AHB\)
\(\Rightarrow DP=AH\left(1\right)\)
Xét \(\Delta EQA\)và \(\Delta AHC\)có
\(\hept{\begin{cases}\widehat{EQA}=\widehat{CHA}=90\\EA=CA\\\widehat{QEA}=\widehat{HCA}\left(phu\widehat{QAE}\right)\end{cases}}\)
\(\Rightarrow\Delta EQA=\Delta AHC\)
\(\Rightarrow EQ=AH\left(2\right)\)
Từ (1) và (2) \(\Rightarrow DP=EQ\)
Xét \(\Delta DPK\)và \(\Delta EQK\)có
\(\hept{\begin{cases}\widehat{DPK}=\widehat{EQK}=90\\DP=EQ\\\widehat{DKP}=\widehat{EKQ}\end{cases}}\)
\(\Rightarrow\Delta DPK=\Delta EQK\)
\(\Rightarrow DK=EK\)
Vậy K là trung điểm của DE
Câu hỏi của Nguyễn Đức Hiếu - Toán lớp 7 - Học toán với OnlineMath
Em tham khảo bài tương tự tại đây nhé.
a) Có B A D ^ = A B C ^ ( giả thiết),
Mà hai góc ở vị trí so le trong nên AD // BC (theo tính chất hai đường thẳng song song).
b) Tương tự ý a), chứng minh được AE // BC
Theo tiên đề ơ-clit, hai đường thẳng AE và AD trùng nhau. Từ đó ba điểmD, A, E thẳng hàng.
a) Có B A D ^ = A B C ^ ( giả thiết),
Mà hai góc ở vị trí so le trong nên AD // BC (theo tính chất hai đường thẳng song song).
a) Tương tự ý a), chứng minh
b) được AE // BC
Theo tiên đề ơ-clit, hai đường thẳng AE và AD trùng nhau. Từ đó ba điểm D, A, E thẳng hàng
a: Ta có: \(\widehat{BAE}=\widehat{BAC}+\widehat{CAE}=\widehat{BAC}+90^0\)
\(\widehat{CAD}=\widehat{CAB}+\widehat{DAB}=\widehat{BAC}+90^0\)
Do đó: \(\widehat{BAE}=\widehat{CAD}\)
Xét ΔBAE và ΔDAC có
AB=AD
\(\widehat{BAE}=\widehat{DAC}\)
AE=AC
DO đó: ΔBAE=ΔDAC
=>BE=DC
b: Gọi giao điểm của BE và CD là H
Ta có: ΔBAE=ΔDAC
=>\(\widehat{ABE}=\widehat{ADC};\widehat{AEB}=\widehat{ACD}\)
Xét tứ giác AHBD có \(\widehat{ADH}=\widehat{ABH}\)
nên AHBD là tứ giác nội tiếp
=>\(\widehat{DHA}=\widehat{DBA}=45^0\)
Xét tứ giác AHCE có \(\widehat{AEH}=\widehat{ACH}\)
nên AHCE là tứ giác nội tiếp
=>\(\widehat{AHE}=\widehat{ACE}=45^0\)
\(\widehat{DHE}=\widehat{DHA}+\widehat{EHA}=45^0+45^0=90^0\)
=>EB\(\perp\)CD tại H