\(\frac{1}{3}\)BC. Từ B và C vẽ đườn...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2021

Lấy M là trung điểm của BD => BM=MD=DC

Dựng MN ⊥AD 

Xét 2 tam giác vuông: ΔCFD và ΔMND có:

góc CDF = góc MDN (2 góc đối đỉnh)

MD=DC (cách dựng)

=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)

=> DF=DN (*)

Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)

Từ (*) và (**) => DF=DN=NE

=> DF=1/2DE (ĐPCM)

11 tháng 2 2020

Tử thần ác quỷ Ủa,bố mẹ bạn mới ra tù hay sao mà ko bày cách bạn ăn nói à,ko bằng đứa con nít,trẻ trâu vậy ai chơi ???

Hình tự vẽ nha bạn !! Mình trc mê vẽ hình chứ giờ nhác vẽ hình lắm

Gọi K là trung điểm BD,Kẻ KI vuông góc với ED

KB=KD;KI//BE nên I là trung điểm ED hay IE=ID ( 1 )

Dễ thấy \(\Delta BID=\Delta CFD\left(g.c.g\right)\Rightarrow ID=DF\) ( 2 ) 

Từ  ( 1 );( 2 ) suy ra đpcm

14 tháng 2 2021

Lấy M là trung điểm của BD => BM=MD=DC

Dựng MN AD 

Xét 2 tam giác vuông: ΔCFD và ΔMND có:

góc CDF = góc MDN (2 góc đối đỉnh)

MD=DC (cách dựng)

=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)

=> DF=DN (*)

Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)

Từ (*) và (**) => DF=DN=NE

=> DF=1/2DE (ĐPCM)

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: a) DC= \(\frac{1}{2}\)AB và DC // ACb) AD=MCc) MN // BC và MN =\(\frac{1}{2}\)BCBài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường...
Đọc tiếp

Bài 1: Cho tam giác ABC; M là trung điểm của AB, N là trung điểm của AC. Trên tia đối của tia NM lấy D sao cho ND=NM. Chứng minh: 

a) DC= \(\frac{1}{2}\)AB và DC // AC

b) AD=MC

c) MN // BC và MN =\(\frac{1}{2}\)BC

Bài 2: tam giác ABC có góc BAC = 90 độ và AB < AC. Trên tia đối của tia BA lấy điểm E sao cho AE = AC. Trên tia đối của tia AC lấy điểm D sao cho AD = AB. Gọi M là trung điểm của BC; N là trung điểm của DE. Đường thẳng BC cắt DE tại H. Chứng minh:

a) DE=BC

b) BC\(\perp\)DE tại H

c) AN = AM và AN\(\perp\)AM

Bài 3: Cho tam giác ABC có góc A > 90 độ, M là trung điểm của BC. Từ B kẻ đường thẳng song song với AC cắt đường thẳng AM tại N. Trên nửa mặt phẳng bờ AB không chứa C vẽ tia Ax \(\perp\)AB, trên Ax lấy điểm D sao cho AD = AB. Trên nửa mặt phẳng bờ AC không chứa B vẽ tia Ay \(\perp\)AC, trên Ay lấy điểm E sao cho AE = AC. Chứng minh:

a) BN = CA

b) góc BAC + góc DAE = 180 độ 

c) AM = \(\frac{1}{2}\)DE

Nhớ vẽ hình hộ mik nha :))

 

0
29 tháng 5 2018

a )

Xét : \(\Delta ABHva\Delta ADH,co:\)

\(\widehat{H_1}=\widehat{H_2}=90^o\left(gt\right)\)

BH = HD ( gt )

AH là cạnh chung 

Do do : \(\Delta ABH=\Delta ADH\left(c-g-c\right)\)

b ) 

Ta có : \(\Delta ABD\) là tam giác đều ( cmt ) 

= > \(\widehat{BAD}=60^o\) ( trong tam giác đều mỗi góc bằng 60o ) 

Ta có : \(\widehat{CAD}=\widehat{BAC}-\widehat{BAD}=90^o-60^o=30^o\) ( tia AD nằm giữa 2 tia AB và AC )

Hay  :  \(\widehat{EAD}=30^o\left(E\in AC\right)\)  

Ta có :\(\widehat{ADH}=60^o\) ( \(\Delta ABD\) là tam giác đều ) 

Ta có : \(\widehat{HAD}=\widehat{H_2}-\widehat{ADH}=90^o-60^o=30^o\)

Ta có : \(AH\perp BC\) và  \(ED\perp BC\)

= > \(AH//ED\) ( vì cùng vuông góc với BC ) 

=> \(\widehat{HAD}=\widehat{ADE}=30^o\) ( 2 góc so le trong của AH//ED ) 

=> \(\Delta AED\) là tam giác cân , và cân tại E ( vì có 2 góc ở đáy bằng nhau ( \(\widehat{HAD}=\widehat{ADE}=30^o\)) ) 

c ) mình không biết chứng minh AH = HF = FC  nha , mình chỉ chứng minh \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\) thôi nha :

Ta có : \(\Delta ABC\) vuông tại A  và AH là đường cao  ( gt ) 

= > \(\frac{1}{AB^2}+\frac{1}{AC^2}=\frac{1}{AH^2}\)  ( hệ thức lượng trong tam giác vuông ) 

 Hình mình vẽ hơi xấu , thông cảm nha 

HỌC TỐT !!! 

  

29 tháng 5 2018

a) Tam giác ABC có AH là đường cao đồng thời là trung tuyến ( BH=HD)

\(\rightarrow\) tam giác ABD cân tại A

Mà  \(\widehat{B}\) = 60 độ \(\rightarrow\) tam giác ABD đều

b) Tam giác ABD đều nên \(\widehat{ADB}\) = \(\widehat{BAD}\) = 60 độ

\(\rightarrow\) \(\widehat{ADE}\) = \(\widehat{HDE}\) - \(\widehat{ADB}\) = 30 độ

Tương tự có \(\widehat{DAE}\) = 30độ

\(\Rightarrow\) Tam giác ADE cân tại E

c1) Xét tam giác AHC và tam giác CFA

           \(\widehat{ACF}\) = \(\widehat{CAF}\) = 30độ

           AC chung

\(\rightarrow\) tam giác bằng nhau ( cạnh huyền - góc nhọn)

\(\rightarrow\) AH = FC

Ta có \(\widehat{BAD}\) = 60 độ và \(\widehat{BAH}\) = 30 độ

\(\rightarrow \) \(\widehat{HAD}\) = 30 độ hay \(\widehat{HAF}\) = 30 độ

 ____Phần còn lại cm tam giác HAF cân là ra 

Mk bận chút việc nên ms làm đến đây thui nka ~

14 tháng 2 2021

Lấy M là trung điểm của BD => BM=MD=DC

Dựng MN AD 

Xét 2 tam giác vuông: ΔCFD và ΔMND có:

ˆCDF=ˆMDNCDF^=MDN^(góc đối đỉnh)

MD=DC (cách dựng)

=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)

=> DF=DN (*)

Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)

Từ (*) và (**) => DF=DN=NE

=> DF=1/2DE (ĐPCM)

14 tháng 2 2021

Lấy M là trung điểm của BD => BM=MD=DC

Dựng MN AD 

Xét 2 tam giác vuông: ΔCFD và ΔMND có:

CDF^=MDN^(góc đối đỉnh)

MD=DC (cách dựng)

=> ΔCFD = ΔMND (cạnh huyền-góc nhọn)

=> DF=DN (*)

Mặt khác, ΔBED vuông tại E có: M là trung điểm => BM=ME=MD => ΔΔBMD cân => MN là đường cao đồng thời là đường trung tuyến => EN=ND (**)

Từ (*) và (**) => DF=DN=NE

=> DF=1/2DE (ĐPCM)