K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét tứ giác ABCQ có 

N là trung điểm của AC

N là trung điểm của BQ

Do đó: ABCQ là hình bình hành

Suy ra: AQ//BC và AQ=BC

Xét tứ giác ACBP có

M là trung điểm của AB

M là trung điểm của CP

Do đó: ACBP là hình bình hành

Suy ra: AP//BC và AP=BC

Ta có: AQ//BC

AP//BC

mà AQ,AP có điểm chung là A

nên Q,A,P thẳng hàng

mà AP=AQ

nên A là trung điểm của PQ

b: Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của AC

Do đó: MN là đường trung bình

=>MN//BC và MN=BC/2

hay MN=PQ/4

=>PQ=4MN

27 tháng 5 2021

Gọi E là giao điểm các đường trung trực của MN và BC.

Theo tính chất đường trung trực ta có \(\left\{{}\begin{matrix}EM=EN\\EB=EC\end{matrix}\right.\).

Lại có BM = CN (gt) nên \(\Delta EMB=\Delta ENC(c.c.c)\).

Suy ra \(\widehat{EMB}=\widehat{ENC}\) nên \(\widehat{EMA}=\widehat{END}\).

Lại có BM = CN và AB = CD nên AM = ND.

Xét \(\Delta EMA\) và \(\Delta END\) có: \(\left\{{}\begin{matrix}AM=ND\\\widehat{EMA}=\widehat{END}\\EM=EN\end{matrix}\right.\)

\(\Rightarrow\Delta EMA=\Delta END\left(c.g.c\right)\Rightarrow EM=EN\).

Suy ra E thuộc đường trung trực của MN.

Vậy đường trung trực của ba đoạn AD, MN, BC đồng quy.

Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BCBài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp...
Đọc tiếp

Bài 1: Tam giác ABC. Gọi D,E lần lượt là trung điểm của BC,AC,AB. Lấy I,K thuộc BC sao cho BI=IK=KC. Gọi M là giao điểm AI và DF, N là giao điểm AK và DE. Cmr: MN//BC

Bài 2: Cho góc nhọn xOy. Trên tia Ox lấy A,B (A thuộc OB), và trên tia Oy lấy C,D (C thuộc OD). Gọi M,N,P,Q lần lượt là trung điểm của AC,AD,BD,BC. Cho góc xOy=90 độ, so sánh MP và NQ.

Bài 3: Cho đoạn thẳng AB, lấy M bất kì thuộc AB. Trên cùng một nmp bờ AB vẽ các tam giác đều AMC<BMD. Gọi E,F,I,K lần lượt là trung điểm của CM,CB,DM,DA. Cmr:

a. EF//KI. b.EI=KF; c.KF=CD/2

Bài 4:Cho tam giác ABCD. Trên tia đối tia BA lấy D, trên tia đối tia CA lấy E sao cho BD=CE. Gọi M,N,P,Q lần lượt là trung điểm của BC,DE,BE,CD. Cmr:

a. tan giác PMQ cân; b.MN vuông góc với PQ; c. Gọi Ax là tia phân giác góc BAC, Cm: Ax//MN

 

Cảm ơn các bạn giúp mình nhiều, Cảm ơn ạ!!

0

a: Xét ΔABC và ΔAMN có

AB=AM

góc BAC=góc MAN

AC=AN

Do đó: ΔABC=ΔAMN

b: ΔABC=ΔAMN

=>góc ABC=góc AMN

=>BC//MN

c: Xét ΔAMK và ΔABI có

AM=AB

góc AMK=góc ABI

MK=BI

Do đó: ΔAMK=ΔABI

9 tháng 8 2018

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

Trong ΔABC, ta có AC > AB

Suy ra: ∠(ABC) > ∠(ACB) (đối diện với cạnh lớn hơn là góc lớn hơn) (1)

Ta có: AB = BM (gt) ⇒ ΔABM cân tại B

Suy ra: ∠(AMB) = ∠A1(tính chất tam giác cân)

Trong ΔABM, ta có ∠(ABC) là góc ngoài tại đỉnh B

Suy ra: ∠(ABC) = ∠(AMB) + ∠A1 hay : ∠(ABC) = 2.∠(AMB)

Suy ra: ∠(AMB) = 1/2 ∠(ABC) (2)

Lại có: AC = CN (gt) ⇒ ΔACN cân tại C

Suy ra: ∠(ANC) = ∠A2(tính chất tam giác cân)

Trong ΔACN, ta có ∠(ACB) là góc ngoài tại đỉnh C

Suy ra: ∠(ACB) = ∠(ANC) + ∠A2 hay ∠(ACB) = 2∠(ANC)

Suy ra: ∠(ANC) = 1/2 ∠(ACB) (3)

Từ (1), (2) và (3) suy ra: ∠(AMB) > ∠(ANC) .