Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Hình,lời giải thì bạn tự làm , có thể sẽ có 1 bạn vẽ hình cho bạn :)
a)
\(AM=\frac{1}{2}AB\Rightarrow S_{AMC}=\frac{1}{2}S_{ABC}\)
\(\Delta AMC.\Delta AMD\Rightarrow S_{AMC}=S_{AMB}\)
Có \(d\left(D;AM\right)=d\left(C;AM\right)\)
b)
\(S_{EMC}=\frac{1}{2}S_{MBC}=\frac{1}{2}.15=7,5\left(cm^2\right)\)
c)
Bạn check lại đề phần c) nhé
c) Mình làm theo đề bạn sử nhé
Gọi O là giao điểm MN và AC
Ta có : AMND là hình bình hành
AE là trọng tâm \(\Rightarrow\)\(\Delta AMN\Rightarrow AE=\frac{2}{3}AO\)
Mà \(AO=\frac{1}{2}AC\Rightarrow AE=\frac{1}{3}AC\)
Chứng minh tương tự ta có :
\(GC=\frac{1}{3}AC\)
\(\Rightarrow EG=\frac{1}{3}AC\)
\(\Rightarrow EG=GC=AE\)
ta có hình vẽ sau
vì BM=NC nên độ dài hai đoạn thẳng là
30-20=10cm
độ dài đáy tam giác AMN là
45-10=35cm
S tam giác AMN là
35x20:2=350cm2
đ/s:350cm2
Bạn có thể vẽ hình ra được không mk ko hiểu hình bài này vẽ thế nào
Chúc bn học tốt
a,
Kẻ AH vuông góc BC
Có: SABC = 1/2.AH.BC
SABE = 1/2.AH.BE
= 1/2.AH.2/3.BC
= SABC.2/3
=> SABE = 2/3.SABC
b,
Vì chiều cao ED có D là trung điểm AB
=> SABE = 2.SBDE
= 2.12 = 24 cm2
=> SABC = 3/2 . SABE = 3/2 . 24 = 36 cm2
1) \(S_{AMC}=\frac{1}{3}\times S_{ABC}\)(chung đường cao hạ từ \(C\), \(AM=\frac{1}{3}\times AB\))
\(S_{AMN}=\frac{1}{3}\times S_{AMC}\)(chung đường cao hạ từ \(M\), \(AN=\frac{1}{3}\times AC\))
\(S_{AMN}=\frac{1}{3}\times S_{AMC}=\frac{1}{3}\times\frac{1}{3}\times S_{ABC}=\frac{1}{9}\times S_{ABC}\)
2) \(S_{AKN}=\frac{1}{3}\times S_{AKC}\)(chung đường cao hạ từ \(K\), \(AN=\frac{1}{3}\times AC\))
\(S_{AKM}=\frac{1}{3}\times S_{AKB}\)(chung đường cao hạ từ \(K\), \(AM=\frac{1}{3}\times AB\))
Cộng lại vế với vế ta được:
\(S_{AKN}+S_{AKM}=\frac{1}{3}\times\left(S_{AKC}+S_{AKB}\right)\)
\(\Leftrightarrow S_{AMKN}=\frac{1}{3}\times S_{ABC}\)
Dễ thấy \(H\)nằm trên đoạn \(AK\)nên \(AH< AK\).