Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Muốn tính KB/KD ta tính S(AKB)/S(AKD), trong đó ký hiệu S( ) là diện tích.
S(AKB)/S(AKC) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy AK).
S(KBE)/S(KCE) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy KE).
=> S(AKB)/S(AKC) = S(KBE)/S(KCE)
Mà S(KBE)/S(KCE) =BE/CE = 3/2 (vì hai tam giác chung đường cao hạ từ K xuống BC)
=> S(AKB)/S(AKC) = 3/2
Mặt khác S(AKC) = 2. S(AKD) (vì hai tam giác chung đường cao hạ K và đáy AKC gấp đôi đáy AKD)
=> S(AKB)/ [2S(AKD)] = 3/2
=> S(AKB)/S(AKD) = 3
=> KB/KD = 3
b) S(ABC) =80 => S(BDC) = 1/2 . 80 = 40
Vì KB = 3 KD => S(KBC) = 3/4 S(BDC) = 3/4 . 40 = 30
Và S(KDC) = 1/4 S(BDC) = 1/4. 40 = 10
Ta lại có vì EC/EB = 2/3 => EC/BC = 2/5 => S(KCE) = 2/5 S(KBC) = 2/5 . 30 = 12
Vậy S(KDCE) = S(KCE) + S(KDC) = 12 + 10 = 22 cm2
Muốn tính KB/KD ta tính S(AKB)/S(AKD), trong đó ký hiệu S( ) là diện tích.
S(AKB)/S(AKC) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy AK).
S(KBE)/S(KCE) = đường cao hạ từ B xuống AE / đường cao hạ từ C xuống AE (vì hai tam giác có chung đáy KE).
=> S(AKB)/S(AKC) = S(KBE)/S(KCE)
Mà S(KBE)/S(KCE) =BE/CE = 3/2 (vì hai tam giác chung đường cao hạ từ K xuống BC)
=> S(AKB)/S(AKC) = 3/2
Mặt khác S(AKC) = 2. S(AKD) (vì hai tam giác chung đường cao hạ K và đáy AKC gấp đôi đáy AKD)
=> S(AKB)/ [2S(AKD)] = 3/2
=> S(AKB)/S(AKD) = 3
=> KB/KD = 3
b) S(ABC) =80 => S(BDC) = 1/2 . 80 = 40
Vì KB = 3 KD => S(KBC) = 3/4 S(BDC) = 3/4 . 40 = 30
Và S(KDC) = 1/4 S(BDC) = 1/4. 40 = 10
Ta lại có vì EC/EB = 2/3 => EC/BC = 2/5 => S(KCE) = 2/5 S(KBC) = 2/5 . 30 = 12
Vậy S(KDCE) = S(KCE) + S(KDC) = 12 + 10 = 22 cm2