Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét ΔANN' có MM'//NN'
nên \(\dfrac{AM}{AN}=\dfrac{MM'}{NN'}\)
=>5/NN'=1/2
=>NN'=10(cm)
Xét hình thang MM'CB có
N là trung điểm của MB
NN'//MM'//CB
Do đó: N' là trung điểm của M'C
Xét hình thang MM'CB có
N là trung điểm của MB
N' là trung điểm của M'C
Do đó: NN' là đường trung bình
=>NN'=(MM'+BC)/2
=>5+BC=20
=>BC=15(cm)
Sửa đề: MB=5cm
Xét ΔABC có MN//BC
nên AM/AB=AN/AC
=>AN/9=1/3
hay AN=3(cm)
Xét ΔABC có MN//BC
nên MN/BC=AM/AB
=>MN/15=1/3
hay MN=5(cm)
a) AC = 10cm Þ SABC =37,5 (cm2)
b) Chứng minh được M A E ^ = A M E ^ (cùng = A B C ^ ) Þ AE = ME. Cmtt ta có AE = NE. Từ đó suy ra ME = NE.
c) Chứng minh EH//GF (//MB) và GE//FH (//NC) Þ EGFH là hình bình hành. Chứng minh được H E G ^ = B A C ^ = 90 0 ⇒ E G F H là hình chữ nhật. Suy ra GH đi qua trung điểm của EF.
S E G F H = H E . E G = 1 2 M B . 1 2 N C = 1 4 . 2 3 A B . 2 3 A C = 25 3 ( c m 2 )
Mà S E G F H = 4. S ⇒ I H F S I H F = 25 12 c m 2
a: AN+CN=AC
=>AN=20-15=5cm
Xét ΔABC có AM/AB=AN/AC
nên MN//BC
b: Xét ΔAMN và ΔNPC có
góc AMN=góc NPC(=góc B)
góc ANM=góc NCP
=>ΔAMN đồng dạng với ΔNPC
a) Học sinh tự làm
b) Chứng minh A N 1 2 N C ⇒ S A M E = S A E N ⇒ E M = E N
hay E là trung điểm MN.
c) Chứng minh được EG//HF và HE/FG nên EHFG là hình bình hành; Mặt khác BM ^ NC (do AB ^ AC)
Suy ra EHFG là hình chữ nhật