Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- Gọi CH, C'H' lần lượt là đường cao của tam giác ABC,AB'C'.
- Ta có: CH⊥AB (CH là đường cao của tam giác ABC).
C'H'⊥AB (C'H' là đường cao của tam giác AB'C')>
=>CH//C'H'.
- Xét tam giác AB'C' có:
CH//C'H' (cmt)
=>\(\dfrac{AC}{AC'}=\dfrac{AH}{AH'}\)(định lí Ta-let)
*\(\dfrac{S_{ABC}}{S_{AB'C'}}=\dfrac{CH.AB}{C'H'.AB'}=\dfrac{AC}{AC'}.\dfrac{AB}{AB'}\)
\(\dfrac{B'A}{B'C}=\dfrac{S_{AMB'}}{S_{CMB'}}=\dfrac{S_{ABB'}}{S_{CBB'}}=\dfrac{S_{ABB'}-S_{AMB'}}{S_{CBB'}-S_{CMB'}}=\dfrac{S_{ABM}}{S_{CBM}}\)
\(\dfrac{C'A}{C'B}=\dfrac{S_{AMC'}}{S_{BMC'}}=\dfrac{S_{ACC'}}{S_{BCC'}}=\dfrac{S_{ACC'}-S_{AMC'}}{S_{BCC'}-S_{BMC'}}=\dfrac{S_{ACM}}{S_{CBM}}\)
\(\dfrac{MA}{MA'}=\dfrac{S_{ABM}}{S_{A'BM}}=\dfrac{S_{ACM}}{S_{A'CM}}=\dfrac{S_{ABM}+S_{ACM}}{S_{A'BM}+S_{A'CM}}=\dfrac{S_{ABM}+S_{ACM}}{S_{MBC}}=\dfrac{S_{ABM}}{S_{MBC}}+\dfrac{S_{ACM}}{S_{MBC}}=\dfrac{B'A}{B'C}+\dfrac{C'A}{C'B}\)
Đây là định lý Ceva nhé bạn!
Giả sử AA', BB', CC' đồng quy tại O.
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{A'B}{A'C}=\dfrac{S_{OA'B}}{S_{OA'C}}=\dfrac{S_{AA'B}}{S_{AA'C}}=\dfrac{S_{AA'B}-S_{OA'B}}{S_{AA'C}-S_{OA'C}}=\dfrac{S_{OAB}}{S_{OAC}}\).
Chứng minh tương tự: \(\dfrac{B'C}{B'A}=\dfrac{S_{OBC}}{S_{OBA}};\dfrac{C'A}{C'B}=\dfrac{S_{OAC}}{S_{OBC}}\).
Nhân vế với vế của các đẳng thức trên ta có đpcm.
P/s: Ngoài ra còn có các cách khác như dùng định lý Thales,..)
a)
i) Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\).
Xét tam giác \(OA'B'\) có:
\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{3}\)
Do đó, \(A'B'//AB\) (định lí Thales đảo)
ii) Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{3}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A'B'}}{{AB}} = \frac{3}{1} = 3\).
b)
i)
- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\).
Xét tam giác \(OA'B'\) có:
\(\frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{1}{3}\)
Do đó, \(A'B'//AB\) (định lí Thales đảo)
Vì \(A'B'//AB \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OB}}{{OB'}} = \frac{{AB}}{{A'B'}} = \frac{1}{3}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A'B'}}{{AB}} = \frac{3}{1} = 3\).
- Vì \(OA' = 3OA \Rightarrow \frac{{OA}}{{OA'}} = \frac{1}{3}\);\(OC' = 3OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{3}\).
Xét tam giác \(OA'C'\) có:
\(\frac{{OA}}{{OA'}} = \frac{{OC}}{{OC'}} = \frac{1}{3}\)
Do đó, \(A'C'//AC\) (định lí Thales đảo)
Vì \(A'C'//AC \Rightarrow \frac{{OA}}{{OA'}} = \frac{{OC}}{{OC'}} = \frac{{AC}}{{A'C'}} = \frac{1}{3}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{A'C'}}{{AC}} = \frac{3}{1} = 3\).
- Vì \(OB' = 3OB \Rightarrow \frac{{OB}}{{OB'}} = \frac{1}{3}\);\(OC' = 3OC \Rightarrow \frac{{OC}}{{OC'}} = \frac{1}{3}\).
Xét tam giác \(OB'C'\) có:
\(\frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{1}{3}\)
Do đó, \(B'C'//BC\) (định lí Thales đảo)
Vì \(B'C'//BC \Rightarrow \frac{{OB}}{{OB'}} = \frac{{OC}}{{OC'}} = \frac{{BC}}{{B'C'}} = \frac{1}{3}\) (hệ quả của định lí Thales)
Do đó, \(\frac{{B'C'}}{{BC}} = \frac{3}{1} = 3\).
Do đó, \(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\)
ii) Xét tam giác \(A'B'C'\) và tam giác \(ABC\) ta có:
\(\frac{{B'C'}}{{BC}} = \frac{{A'B'}}{{AB}} = \frac{{A'C'}}{{AC}}\) (chứng minh trên)
Do đó, tam giác \(A'B'C'\) đồng dạng với tam giác \(ABC\).