K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 9 2018

Chọn A.

Giả sử A = α; B + C = β.

Biểu thức trở thành P =  sinα.cosβ - cosα.sinβ.

Trong tam giác ABC, có A + B + C = 1800 nên α + β = 1800.

Do hai góc α và β bù nhau nên sinα = sinβ và cosα = - cosβ.

Do đó, P = sinα.cosβ - cosα.sinβ = -sinα.cosα + cosα.cosβ = 0.

NV
17 tháng 6 2020

f/

\(sin2A+sin2B+sin2C=2sin\left(A+B\right).cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC.cos\left(A-B\right)+2sinC.cosC\)

\(=2sinC\left(cos\left(A-B\right)+cosC\right)\)

\(=2sinC\left[cos\left(A-B\right)-cos\left(A+B\right)\right]\)

\(=4sinC.sinA.sinB\)

g/

\(cos^2A+cos^2B+cos^2C=\frac{1}{2}+\frac{1}{2}cos2A+\frac{1}{2}+\frac{1}{2}cos2B+cos^2C\)

\(=1+\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)

\(=1+cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

\(=1-cosC.cos\left(A-B\right)+cos^2C\)

\(=1-cosC\left(cos\left(A-B\right)-cosC\right)\)

\(=1-cosC\left[cos\left(A-B\right)+cos\left(A+B\right)\right]\)

\(=1-2cosC.cosA.cosB\)

NV
17 tháng 6 2020

d/ \(sinA+sinB+sinC=2sin\frac{A+B}{2}cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}.cos\frac{A-B}{2}+2sin\frac{C}{2}.cos\frac{C}{2}\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+sin\frac{C}{2}\right)\)

\(=2cos\frac{C}{2}\left(cos\frac{A-B}{2}+cos\frac{A+B}{2}\right)\)

\(=4cos\frac{C}{2}.cos\frac{A}{2}.cos\frac{B}{2}\)

e/

\(cosA+cosB+cosC=2cos\frac{A+B}{2}cos\frac{A-B}{2}+1-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}.cos\frac{A-B}{2}-2sin^2\frac{C}{2}\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-sin\frac{C}{2}\right)\)

\(=1+2sin\frac{C}{2}\left(cos\frac{A-B}{2}-cos\frac{A+B}{2}\right)\)

\(=1+4sin\frac{C}{2}.sin\frac{A}{2}sin\frac{B}{2}\)

B=1-sin2a+cos2a

\(=\sin^2a+\cos^2a-\sin^2a+\cos^2a=2\cos^2a\)

C= 1-sina.cosa.tana

\(=1-\sin a.\cos a.\frac{\sin a}{\cos a}=1-\sin^2a=\cos^2a\)

biết có vậy thôi à

28 tháng 9 2023

Theo đl sin có:

\(\dfrac{a}{sinA}=\dfrac{b}{sinB}=\dfrac{c}{sinC}\Rightarrow b=a\dfrac{sinB}{sinA};c=\dfrac{sinC}{sinA}.a\)

Mà `b+c=2a`

\(\Rightarrow a\dfrac{sinB}{sinA}+a\dfrac{sinC}{sinA}=2a\\ \Rightarrow\dfrac{sinB}{sinA}+\dfrac{sinC}{sinA}=2\\ \Leftrightarrow sinB+sinC=2sinA\)

Chọn B

12 tháng 5 2017

a) Sin (B+C) = Sin (180-A) = Sin A
b) Cos (A+B) = Cos ( 180-A) = Cos A
c) Sin (\(\dfrac{B+C}{2}\)) = Sin \(\left(\dfrac{180-A}{2}\right)\)= Sin \(\left(90^0-\dfrac{A}{2}\right)\)= Cos \(\dfrac{A}{2}\)

d) Tan \(\left(\dfrac{A+C}{2}\right)\)= Tan\(\left(\dfrac{180-B}{2}\right)\)=Tan\(\left(90^0-\dfrac{B}{2}\right)\)= Cot \(\dfrac{B}{2}\)

NV
18 tháng 4 2019

\(V=cos^2A+cos^2B+cos^2C-1\)

\(V=\frac{1+cos2A}{2}+\frac{1+cos2B}{2}+cos^2C-1\)

\(V=\frac{1}{2}\left(cos2A+cos2B\right)+cos^2C\)

\(V=cos\left(A+B\right).cos\left(A-B\right)+cos^2C\)

\(V=-cosC.cos\left(A-B\right)+cos^2C\)

\(V=cosC\left[cos\left(A-B\right)-cosC\right]\)

\(V=-2cosC.sin\left(\frac{A-B+C}{2}\right).sin\left(\frac{A-B-C}{2}\right)\)

\(V=2cosC.cosB.cosA\)

\(V=0\Rightarrow\left[{}\begin{matrix}cosA=0\\cosB=0\\cosC=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}A=90^0\\B=90^0\\C=90^0\end{matrix}\right.\)

29 tháng 9 2022

Theo định lí hàm sin, ta có:

   
A
B
sin
ˆ
C
=
A
C
sin
ˆ
B

5
sin
45
°
=
A
C
sin
60
°

A
C
=
5.
sin
60
0
sin
45
0
=
5

6
2
 .