K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2017

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Giả sử đã dựng được hai điểm M, N thỏa mãn điều kiện đầu bài. Đường thẳng qua M và song song với AC cắt BC tại D. Khi đó tứ giác MNCD là hình bình hành. Do đó CN = DM. Từ đó suy ra tam giác AMD cân tại M. Do đó Giải sách bài tập Toán 11 | Giải sbt Toán 11 . Suy ra AD là phân giác trong của góc A. Do đó AD dựng được .Ta lại có  N M →   =   C D → , nên có thể xem M là ảnh của N qua phép tịnh tiến theo vectơ  D C → .

Từ đó suy ra cách dựng:

- Dựng đường phân giác trong của góc A. Đường này cắt BC tại D.

- Dựng đường thẳng d là ảnh của đường thẳng AC qua phép tịnh tiến theo vectơ  C D → . d cắt AB tại M.

- Dựng N sao cho  N M →   =   C D → .

Khi đó dễ thấy M, N thỏa mãn điều kiện đầu bài.

\(BC\) \(\subset\)\(\left(SBC\right)\)

Tìm giao tuyến của của \(\left(OMN\right)\)và \(\left(SBC\right)\):

 \(N\)là điểm chung thứ nhất

Ta có : \(MO\)\(\subset\)\(\left(AMO\right)\)\(\equiv\)\(\left(SAH\right)\)với \(H=AO\)\(\cap\) \(BC\)

\(\left(SAH\right)\)\(\cap\) \(\left(SBC\right)\)\(SH\)

Trong \(\left(SAH\right)\)\(MO\)\(\cap\) \(SH\)\(K\)

\(K\)là điểm chung thứ 2.

Vậy \(\left(OMN\right)\)\(\cap\)\(\left(SBC\right)\)\(NK\)

Trong \(\left(SBC\right):\)\(NK\)\(\cap\)\(BC\)\(P\)

Vậy \(\left(OMN\right)\)\(\cap\) \(BC\)\(P\)

8 tháng 12 2021

Ta có N thuộc (OMN)

C thuộc đường thẳng BC 

Mà N trùng với C => N là giao điểm của (OMN) và BC

17 tháng 6 2017

Đáp án C

15 tháng 10 2023

a: Trong mp(ABC), gọi E là giao điểm của MN và BC

\(O\in\left(OMN\right);O\in\left(BCD\right)\)

=>\(O\in\left(OMN\right)\cap\left(BCD\right)\)

\(E\in MN\subset\left(OMN\right);E\in BC\subset\left(BCD\right)\)

=>\(E\in\left(OMN\right)\cap\left(BCD\right)\)

Do đó: \(\left(OMN\right)\cap\left(BCD\right)=OE\)

b: Chọn mp(BCD) có chứa DB

\(\left(OMN\right)\cap\left(BCD\right)=OE\)

Gọi F là giao của OE với DB

=>F là giao của DB với mp(OMN)

Chọn mp(BCD) có chứa DC

\(\left(OMN\right)\cap\left(BCD\right)=OE\)

Gọi K là giao của OE với DC

=>K là giao của DC với mp(OMN)

 

17 tháng 10 2023

Em cảm ơn ạ 

2:

a: \(B\in SB\)

\(B\in\left(ABC\right)\)

Do đó: \(B=SB\cap\left(ABC\right)\)

b: Chọn mp(SAB) có chứa BH

\(SA\subset\left(SAB\right)\)

\(SA\subset\left(SAC\right)\)

Do đó: \(\left(SAB\right)\cap\left(SAC\right)=SA\)

Gọi E là giao của BH và SA

=>E là giao điểm cần tìm

c: Chọn mp(SBC) có chứa BK

\(SC\subset\left(SBC\right)\)

\(SC\subset\left(SAC\right)\)

Do đó: \(\left(SBC\right)\cap\left(SAC\right)=SC\)

Gọi F là giao của BK với SC

=>F là giao điểm cần tìm

d: Trong mp(SAC), gọi O là giao của HK với AC

mà \(AC\subset\left(ABC\right)\)

nên \(O=HK\cap\left(ABC\right)\)

1:

a: \(S\in SA\)

\(S\in SB\subset\left(SBC\right)\)

Do đó: \(S=SA\cap\left(SBC\right)\)

b: Chọn mp(SAB) có chứa SM

\(AB\subset\left(ABC\right)\)

\(AB\subset\left(SAB\right)\)

Do đó: \(AB=\left(SAB\right)\cap\left(ABC\right)\)

\(M\in AB\)

=>SM giao AB=M

=>\(M=SM\cap\left(ABC\right)\)

c: Chọn mp(BAC) có chứa MN

\(BC\subset\left(BAC\right)\)

\(BC\subset\left(SBC\right)\)

Do đó: (BAC) giao (SBC)=BC

mà \(BC\cap MN=N\)

nên \(N=MN\cap\left(SBC\right)\)

d: Chọn mp(ABC) có chứa MN

\(AC\subset\left(SAC\right)\)

\(AC\subset\left(ABC\right)\)

Do đó: \(AC=\left(SAC\right)\cap\left(ABC\right)\)

Gọi giao của MN và AC là E

=>\(E=MN\cap\left(SAC\right)\)

7 tháng 2 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Nhận xét:

Do giả thiết cho IJ không song song với CD và chúng cùng nằm trong mặt phẳng (BCD) nên khi kéo dài chúng gặp nhau tại một điểm.

Gọi K = IJ ∩ CD.

Ta có: M là điểm chung thứ nhất của (ACD) và (IJM);

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (MIJ) ∩ (ACD) = MK

b) Với L = JN ∩ AB ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Như vậy L là điểm chung thứ nhất của hai mặt phẳng (MNJ) và (ABC)

Gọi P = JL ∩ AD, Q = PM ∩ AC

Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Nên Q là điểm chung thứ hai của (MNJ) và (ABC)

Vậy LQ = (ABC) ∩ (MNJ).