Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
b: Ta có: ΔBAD=ΔBED
nên \(\widehat{BAD}=\widehat{BED}=90^0\)
hay DE⊥BC
c: Xét ΔDEC vuông tại E và ΔDAM vuông tại A có
DE=DA
EC=AM
Do đó: ΔDEC=ΔDAM
Suy ra: DC=DM
Xét \(\Delta DEA\) và \(\Delta BAC\) có:
AE=AC( GT)
\(\widehat{DAE}\)=\(\widehat{BAC}\)( Đối đỉnh)
AB= AD( GT)
=> \(\Delta DEA\)=\(\Delta BAC\)( c-g-c)
Khi đó: \(\widehat{EDA}\)=\(\widehat{CBA}\) ( cặp góc tương ứng)
Xét \(\Delta NDA\) và \(\Delta MBA\) có:
DN=BM ( GT)
\(\widehat{EDA}\)=\(\widehat{CBA}\)( C/m trên)
AB=AD( GT)
=>\(\Delta NDA\)=\(\Delta MBA\)( c-g-c)
Khi đó: \(\widehat{BAM}\)=\(\widehat{DAN}\)( cặp góc tương ứng)(1)
Ta có: \(\widehat{DAN}\)+\(\widehat{NAB}\)= 180 độ ( Kề bù)(2)
Kết hợp (1) và (2) suy ra:\(\widehat{BAM}\)+\(\widehat{NAB}\)= 180 độ
Khi đó: \(\widehat{MAN}\)= 180 độ
=> M,A,N thẳng hàng
a)
Sửa đề: ΔABM=ΔADN
Xét ΔAED và ΔACB có
AE=AC(gt)
\(\widehat{EAD}=\widehat{CAB}\)(hai góc đối đỉnh)
AD=AB(gt)
Do đó: ΔAED=ΔACB(c-g-c)
⇒\(\widehat{ADE}=\widehat{ABC}\)(hai góc tương ứng)
hay \(\widehat{ADN}=\widehat{ABM}\)
Xét ΔADN và ΔABM có
DN=BM(gt)
\(\widehat{ADN}=\widehat{ABM}\)(cmt)
AD=AB(gt)
Do đó: ΔADN=ΔABM(c-g-c)
b) Ta có: ΔADN=ΔABM(cmt)
nên \(\widehat{DAN}=\widehat{BAM}\)(hai góc tương ứng)
mà \(\widehat{BAM}+\widehat{DAM}=180^0\)(hai góc kề bù)
nên \(\widehat{DAN}+\widehat{DAM}=180^0\)
\(\Leftrightarrow\widehat{NAM}=180^0\)
hay M,A,N thẳng hàng(đpcm)
ΔABC và ΔADE có:
AB = AD (gt)
AC = AE (gt)
∠BAC = ∠DAE (hai góc đối đỉnh)
⇒ ΔABC = ΔADE (c.g.c)
⇒ ∠C = ∠E ⇒ DE // BC.
a)\(\Delta AED,\Delta ACB\)có AE = AC (gt) ;\(\widehat{EAD}=\widehat{CAB}\)(đối đỉnh) ; AD = AB (gt)
\(\Rightarrow\Delta AED=\Delta ACB\left(c.g.c\right)\Rightarrow\widehat{D}=\widehat{B}\)(2 góc tương ứng ở vị trí so le trong) => ED // BC
b) \(\Delta MAD,\Delta NAB\)có\(\widehat{MAD}=\widehat{NAB}\)(đối đỉnh) ; AD = AB (gt) ;\(\widehat{D}=\widehat{B}\) (cmt)
\(\Rightarrow\Delta MAD=\Delta NAB\left(g.c.g\right)\Rightarrow AM=AN\)(2 cạnh tương ứng)