Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A A A B B B C C C D D D M M M N N N Vì MD//AC,mà \(\widehat{NAD},\widehat{MDA}\)là 2 góc ở vị trí so le trong nên suy ra \(\widehat{NAD}=\widehat{MDA}\left(1\right)\)
Lập luận tương tự thì ta cũng có \(\widehat{NDA}=\widehat{MAD}\left(2\right)\)
Mà theo giả thiết thì AD là tia phân giác góc BAC nên \(\widehat{MAD}=\widehat{NAC}\left(3\right)\)
Từ (1),(2),(3) suy ra \(\widehat{NAD}=\widehat{MAD}=\widehat{NDA}=\widehat{MDA}\left(4\right)\)
Suy ra \(180^0-\widehat{MAD}-\widehat{MDA}=180^0-\widehat{NAD}-\widehat{NDA}\Rightarrow\widehat{AMD}=\widehat{DNA}\)
Vậy \(\widehat{AMD}=\widehat{DNA}\)
b/ Từ (4) suy ra DA là tia phân giác của góc MDN
Vậy DA là tia phân giác của góc MDN
P/s: Cách của mình dài dòng lắm, chưa chắc gì đã chặt chẽ nữa
a)-Gọi chân đường thẳng vuông góc kẻ từ trung điểm D tới phân gác góc BAC là G
=>AG vuông góc với DG => AG vuông góc với EF
-Xét tam giác AFE có AG vừa là phân giác vừa là đường cao => tam giác AFE là tam giác cân và cân tại A(đpcm)
=>góc AFE = góc AEF
-BM //AC => AFE = BME (đồng vị) => BME = AEF => tam giác BME là tam giác cân và cân tại B(đpcm)
b) Xét tam giác CFD và tam giác MBD:
+) FDC = MDB (đối đỉnh)
+) CD=BD (D là trung điểm BC)
+) FCD = DBM ( so le trong - BM //AC)
=> tam giác CFD = tam giác MBD
=> CF = BM ( hai cạnh tương ứng)
- tam giác BME cân tại B (cmt) => BM=BE
=> CF=BE
c)-DO là đường trung trực của cạnh BC => BO=CO
-tam giác AFE cân tại A => AG vừa là đường cao vừa là đường trung trực từ đỉnh tới cạnh đáy FE. O nằm trên FE => FO=EO
-Xét tam giác OCF và tam giác OBE:
+) BO=CO (cmt)
+) FO=EO (cmt)
+) CF=BE (cmt)
=> tam giác OCF=tam giác OBE (đpcm)
Gọi H là giao điểm của CF vs AB, K là trung điểm AH => DK//GH => KH/BH = DG/BG (1)
Mặt khác dễ thấy tg BCH cân tại B => BH = CB và theo tính chất phân giác ta có:
AE/CE = AB/CB = (AH + BH)/BH = AH/BH + 1 <=> AH/BH = AE/CE - 1 = (AE - CE)/CE = ((AD + DE) - (CD - DE))/CE = 2DE/CE (vì AD = CD)
<=> 2KH/BH = 2DE/CE <=> KH/BH = DE/CE (2)
Từ (1) và (2) => DE/CE = DG/BG => EG//BC mà DF//AB (do D; F là trung điểm của AC;CH) => DF đi qua trung điểm của BC => DF đi qua trung điểm EG (Ta lét(
a)
Vì AB//DE ⇒BADˆ=ADEˆ⇒BAD^=ADE^(so le trong)
mà BADˆ=DAEˆBAD^=DAE^(gt) ⇒DAEˆ=ADEˆ⇒DAE^=ADE^ hay ΔAEDΔAED cân tại E⇒AE=ED⇒AE=ED(1)
b)
Xét ΔKEBΔKEB và ΔDBEΔDBE có:
KBEˆ=BEDˆKBE^=BED^(BA//BE)
BE cạnh chung
KEBˆ=EBDˆKEB^=EBD^(KE//BC)
⇒ΔKEB=ΔDBE⇒ΔKEB=ΔDBE(G-C-G)
⇒BK=DE⇒BK=DE(2)
Từ (1) và (2) ⇒BK=AE
chúc bạn học tốt ❤❤❤😀😀😀😀😀😀🎈🎈
a: Xét tứ giác AMDN có
AM//DN
AN//DM
Do đó: AMDN là hình bình hành
Suy ra: \(\widehat{BAC}=\widehat{MDN}\)
b: Hình bình hành AMDN có AD là tia phân giác của góc MAN
nên AMDN là hình thoi
Suy ra: DA là tia phân giác của góc MDN