Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$\frac{a}{bc}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a+b-c}$
$\Leftrightarrow \frac{a+c}{bc}=\frac{a+b}{c(a+b-c)}$
$\Rightarrow (a+c)(a+b-c)=b(a+b)$
$\Leftrightarrow a^2+bc-c^2=b^2$
$\Leftrightarrow a^2=b^2+c^2-bc$
Mặt khác theo định lý cos: $a^2=b^2+c^2-2bc\cos A$
$\Rightarrow 2.\cos A=1\Rightarrow \cos A=\frac{1}{2}\Rightarrow \widehat{A}=60^0$ (đpcm)
Ta đổi chiều bất đẳng thức, khi đó bất đẳng thức cần chứng minh tương đương với:
\(18\left(\frac{a^3}{1+a^3}+\frac{b^3}{1+b^3}+\frac{c^3}{1+c^3}\right)+\left(a+b+c\right)^3\ge54\)
Để ý abc=1 thì \(\frac{a^3}{1+a^3}=\frac{a^3}{abc+a^3}=\frac{a^2}{bc+a^2}\)nên bất đẳng thức trên thành:
\(18\left(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\right)+\left(a+b+c\right)^3\ge54\)
Lại cũng từ \(abc=1\) ta có \(\left(a+b+c\right)^3\ge27abc=27\), do đó ta sẽ chứng minh được khi ta chỉ ra được:
\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{3}{2}\)
Vế trái của đánh giá trên áp dụng bất đẳng thức Bunhiacopxki dạng phân thức. Lúc này ta được:
\(\frac{a^2}{bc+a^2}+\frac{b^2}{ca+b^2}+\frac{c^2}{ab+c^2}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}\)
Tuy nhiên để đến khi \(a=b=c=1\) thì:
\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}=\left(a+b+c\right)^3=27\)
Ta sử dụng bất đẳng thức Cauchy dạng \(x+y\ge2\sqrt{xy}\), khi đó ta được:
\(\frac{18\left(a+b+c\right)^2}{a^2+b^2+c^2+ab+bc+ca}+\left(a+b+c\right)^3\ge\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\)
Chứng minh sẽ hoàn tất nếu ta chỉ được:
\(\sqrt{\frac{18\left(a+b+c\right)^5}{a^2+b^2+c^2+ab+bc+ca}}\ge54\Leftrightarrow\left(a+b+c\right)^5\ge\frac{81}{2}\left(a^2+b^2+c^2+ab+bc+ca\right)\)
Vậy theo bất đẳng thức Cauchy ta được:
\(\left(a+b+c\right)^6=\left[\left(a^2+b^2+c^2\right)+\left(ab+bc+ca\right)+\left(ab+bc+ca\right)\right]^3\)
\(\ge27\left(a+b+c\right)^2\left(ab+bc+ca\right)^2\ge81abc\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
\(=81\left(a^2+b^2+c^2\right)\left(a+b+c\right)\)
Khi đó ta được:
\(\left(a+b+c\right)^5\ge81\left(a^2+b^2+c^2\right)\)
Vậy ta cần chỉ ra rằng:
\(2\left(a^2+b^2+c^2\right)\ge a^2+b^2+c^2+ab+bc+ca\)
Vậy bất đẳng thức trên tương đương với \(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\), là một bất đẳng thức hiển nhiên đúng.
Vậy bất đẳng thức được chứng minh, dấu đẳng thức xảy ra khi \(a=b=c=1\)
Thay abc = 1 vào bđt cần chứng minh :
\(a+b+c\ge\frac{a\left(bc+1\right)}{b\left(ac+1\right)}+\frac{b\left(ac+1\right)}{c\left(ab+1\right)}+\frac{c\left(ab+1\right)}{a\left(bc+1\right)}\)
\(\Leftrightarrow a\left(1-\frac{bc+1}{ac+1}\right)+b\left(1-\frac{ac+1}{ab+1}\right)+c\left(1-\frac{ab+1}{bc+1}\right)\ge0\)
\(\Leftrightarrow\frac{ac\left(a-b\right)}{ac+1}+\frac{ab\left(b-c\right)}{ab+1}+\frac{bc\left(c-a\right)}{bc+1}\ge0\)
\(\Leftrightarrow\frac{ac\left[-\left(c-a\right)-\left(b-c\right)\right]}{ac+1}+\frac{ab\left[-\left(a-b\right)-\left(c-a\right)\right]}{ab+1}+\frac{bc\left[-\left(b-c\right)-\left(a-b\right)\right]}{bc+1}\ge0\)
\(\Leftrightarrow\left[\frac{-ac\left(c-a\right)}{ac+1}-\frac{ab\left(c-a\right)}{ab+1}\right]+\left[-\frac{ac\left(b-c\right)}{ac+1}-\frac{bc\left(b-c\right)}{bc+1}\right]+\left[-\frac{ab\left(a-b\right)}{ab+1}-\frac{bc\left(a-b\right)}{bc+1}\right]\ge0\)
\(\Leftrightarrow-a\left(c-a\right)\left(c+b\right)\left(\frac{1}{ac+1}+\frac{1}{ab+1}\right)-c\left(b-c\right)\left(a+b\right)\left(\frac{1}{ac+1}+\frac{1}{bc+1}\right)-b\left(a-b\right)\left(a+c\right)\left(\frac{1}{ab+1}+\frac{1}{bc+1}\right)\ge0\)(1)
Đặt \(x=\frac{1}{ab+1},y=\frac{1}{bc+1},z=\frac{1}{ac+1}\)
Tiếp tục phân tích : \(-c\left(b-c\right)\left(a+b\right).x-b\left(a-b\right)\left(a+c\right).y=-c\left(a+b\right).x\left[-\left(c-a\right)-\left(a-b\right)\right]-b\left(a+c\right).y\left[-\left(b-c\right)-\left(c-a\right)\right]\)
\(=\left(c-a\right).\left[c\left(a+b\right)x+b\left(a+c\right)y\right]+c\left(a+b\right)\left(a-b\right).x+b\left(a+c\right)\left(b-c\right).y\)
Tới đây giả sử \(a\ge b\ge c>0\) là ra nhé :)
Ta có:
\(a+b+\sqrt{2\left(a+c\right)}=a+b+\sqrt{\frac{a+c}{2}}+\sqrt{\frac{a+c}{2}}\ge3\sqrt[3]{\frac{\left(a+b\right)\left(a+c\right)}{2}}\)
Hoàn toàn tương tự ta có:
\(\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}\le\frac{2}{27\left(b+c\right)\left(b+a\right)}\);
\(\frac{1}{\left(c+b+\sqrt{\left(c+b\right)}\right)^3}\le\frac{2}{27\left(c+a\right)\left(c+b\right)}\)
Cộng theo bất đẳng thức trên ta được:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{4\left(a+b+c\right)}{27\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)
Do đó:
\(\frac{1}{\left(a+b+\sqrt{2\left(a+c\right)}\right)^3}+\frac{1}{\left(b+c+\sqrt{2\left(b+a\right)}\right)^3}+\frac{1}{\left(c+a+\sqrt{2\left(c+b\right)}\right)^3}\)
\(\le\frac{1}{6\left(ab+bc+ca\right)}\)
Vậy bất đẳng thức được chứng minh, bất đẳng thức xày ra khi \(a=b=c=\frac{1}{4}\)
Lời giải:
Áp dụng bất đẳng thức AM_GM kết hợp với $abc=1$:
\(\frac{a}{b}+\frac{a}{c}+1\geq 3\sqrt[3]{\frac{a^2}{bc}}=3a\). Tương tự với các phân thức khác
\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+2\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{b}{a}+\frac{c}{b}+\frac{a}{c}+3\geq 3(a+b+c)\)
Tiếp tục áp dụng AM_GM:
\(\frac{b}{a}+b^2c^2a+c\geq 3\sqrt[3]{b^3c^3}=3bc......\), công theo vế và rút gọn
\(\Rightarrow \frac{b}{a}+\frac{c}{b}+\frac{a}{c}+a+b+c\geq 2(ab+bc+ac)=2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Cộng hai BĐT thu được lại, ta có:
\(\Rightarrow \frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\geq 2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)
Ta có đpcm. Dấu $=$ xảy ra khi $a=b=c=1$
định lý hàm số sin:
a/ \(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=\)2R
=> a = 2R.sinA = 2R.sin[180o - (B+C)] = 2R.sin(B+C)
và b = 2R.sinB; c = 2R.sinC thay vào (*) được:
\(\frac{2R\times sinB}{cosB}+\frac{2R\times sinC}{cosC}=\frac{2R\times sin\left(B+C\right)}{sinBsinC}\)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC)
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC)
<=> cosBcosC = sinB.sinC
<=> cosBcosC - sinB.sinC = 0
<=> cos(B+C) = 0
<=> B+C = 90o
vậy tam giác ABC vuông tại A
b/cosB+c/cosC=a/sinB.sinC (*)
Áp dụng định lý hàm số sin:
a/sinA = b/sinB = c/sinC = 2R
=> a = 2R.sinA = 2R.sin[1800 - (B+C)] = 2R.sin(B+C)
và b = 2R.sinB; c = 2R.sinC thay vào (*) được:
2R.sinB/cosB + 2RsinC/cosC = 2R.sin(B+C)/(sinB.sinC)
<=>sinB/cosB + sinC/cosC = sin(B+C)/(sinB.sinC)
<=> sin(B+C)/(cosBcosC) = sin(B+C)/(sinB.sinC)
<=> cosBcosC = sinB.sinC
<=> cosBcosC - sinB.sinC = 0
<=> cos(B+C) = 0
<=> B+C = 900
A B C H
BC=a; AC=b; AB=c
Từ C dựng đường thẳng vuông góc với AB tại H
\(\frac{a}{bc}+\frac{1}{b}=\frac{1}{c}+\frac{1}{a+b-c}.\)
\(\Rightarrow a\left(a+b-c\right)+c\left(a+b-c\right)=b\left(a+b-c\right)+bc\)
\(\Rightarrow a^2+ab-ac+ac+bc-c^2=ab+b^2-bc+bc\)
\(\Rightarrow a^2-b^2-c^2+bc=0\) (*)
Ta có \(AB=c=AH+BH\Rightarrow c^2=AH^2+BH^2+2.AH.BH\) (**)
Xét tg vuông ACH có
\(AH^2=AC^2-CH^2=b^2-CH^2\)
Xét tg vuông BCH có
\(BH^2=BC^2-CH^2=a^2-CH^2\)
Thay giá trị của \(AH^2\) và \(BH^2\) vào (**) ta có
\(c^2=b^2-CH^2+a^2-CH^2+2.AH.BH=b^2+a^2-2.CH^2+2.AH.BH\) Thay vào (*) ta có
\(a^2-b^2-\left(b^2+a^2-2.CH^2+2.AH.BH\right)+bc=0\)
\(\Rightarrow-2.b^2+2.CH^2-2.AH.BH+bc=0\)
\(\Rightarrow-2\left(b^2-CH^2\right)-2.AH.BH+bc=0\)
\(\Rightarrow-2.AH^2-2.AH.BH+bc=0\)
\(\Rightarrow bc=2.AH\left(AH+BH\right)=2.AH.AB=2.AH.c\Rightarrow b=AC=2.AH\)
Xét tg vuông ACH có
\(\cos A=\frac{AH}{AC}=\frac{AH}{2.AH}=\frac{1}{2}\Rightarrow\widehat{A}=60^o\left(dpcm\right)\)