Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
Xét ΔABC có AB<BC<AC
nên \(\widehat{C}< \widehat{A}< \widehat{B}\)
\(a,\widehat{A}+\widehat{B}+\widehat{C}=180\\ \Rightarrow180-3\widehat{C}+\widehat{C}+70=180\\ \Rightarrow-2\widehat{C}=-70\\ \Rightarrow\widehat{C}=35\\ \Rightarrow\widehat{A}=180-35=145\)
Câu 4: Cho tam giác ABC vuông tại A có AB = 8cm, AC = 6cm.
a, Tính độ dài cạnh BC của tam giác ABC.
b, Trên tia đối của ria AB lấy điểm D sao cho AD = AB, đường trung tuyến BK của tam giác BCD cắt AC tại E. Tính độ dài các đoạn thẳng EC và EA.
c, Chứng minh CB = CD.
* Hình tự vẽ
a)
Áp dụng định lý Pytago ta tính được cạnh huyền BC = 10cm
b)
Xét tam giác DBC, ta có:
BK là trung tuyến ứng với cạnh CD ( gt )
CA là trung tuyến ứng với cạnh BD ( AB = AD )
BK giao với CA tại E
=> E là trọng tâm của tam giác BDC
=> CE = \(\frac{2AC}{3}\)= 4cm ; AE = 2cm
c)
Xét tam giác BDC, ta có:
CA là trung tuyến ứng với cạnh BD
CA là đường cao ứng với cạnh BD
=> Tam giác BDC cân tại C
=> CB = CD
a: ΔABC cân tại A
=>\(\widehat{ABC}=\widehat{ACB}\)
mà \(\widehat{ABC}=74^0\)
nên \(\widehat{ACB}=74^0\)
Ta có: ΔABC cân tại A
=>\(\widehat{BAC}=180^0-2\cdot\widehat{ABC}\)
=>\(\widehat{BAC}=180^0-2\cdot74^0=32^0\)
b: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔAHB=ΔAKC
=>AH=AK
=>ΔAHK cân tại A
c: Ta có: ΔAHB vuông tại H
=>\(AH^2+BH^2=AB^2\)
=>\(AH^2=10^2-6^2=64\)
=>\(AH=\sqrt{64}=8\left(cm\right)\)
=>AK=8(cm)
d: Xét ΔAKO vuông tại K và ΔAHO vuông tại H có
AO chung
AH=AK
Do đó: ΔAKO=ΔAHO
=>\(\widehat{KAO}=\widehat{HAO}\)
=>\(\widehat{BAO}=\widehat{CAO}\)
=>AO là phân giác của góc BAC
a: ta có; ΔABC=ΔMNP
=>BC=NP
mà BC=6cm
nên NP=6cm
b: Ta có: ΔABC=ΔMNP
=>\(\widehat{B}=\widehat{N}\)
mà \(\widehat{B}=70^0\)
nên \(\widehat{N}=70^0\)
Ta có: ΔABC=ΔMNP
=>\(\widehat{C}=\widehat{P}\)
mà \(\widehat{C}=50^0\)
nên \(\widehat{P}=50^0\)
Xét ΔMNP có \(\widehat{M}+\widehat{N}+\widehat{P}=180^0\)
=>\(\widehat{M}+50^0+70^0=180^0\)
=>\(\widehat{M}=60^0\)