Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(AH\perp BC\) \(\Rightarrow AH< AB;AH< AC\)
\(\Rightarrow2.AH< AB+AC\Leftrightarrow AH< \dfrac{AB+AC}{2}\)
b) Theo câu a ta có: \(AH< \dfrac{AB+AC}{2}\) \(\left(1\right)\)
Tương tự ta có: \(BK< \dfrac{AB+BC}{2}\) \(\left(2\right)\)
\(CI< \dfrac{CA+CB}{2}\) \(\left(3\right)\)
Từ \(\left(1\right)\),\(\left(2\right)\) và \(\left(3\right)\) \(\Rightarrow AH+BK+CI< AB+AC+BC\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Em tham khảo lời giải tại đây nhé.
Câu hỏi của Acot gamer - Toán lớp 7 - Học toán với OnlineMath
![](https://rs.olm.vn/images/avt/0.png?1311)
e, Trên tia đối của tia DH lấy điểm F sao cho DF = DH = 1/2 FH
Xét tam giác ADF và BDH có :
AD = BD ( cmt )
ADF = BDH ( 2 góc đối đỉnh )
DF = DH ( cách vẽ )
=> Tam giác ADF = tam giác BDH ( c.g.c )
=> FH = AB ( 2 cạnh tương ứng )
Mà DF = DH = 1/2 FH ( cách vẽ )
=> HD = 1/2 AB ( đpcm )
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét 2 tam giác vuông ΔBKC và ΔCIB ta có:
Cạnh huyền BC chung
\(\widehat{ABC}=\widehat{ACB}\) (ΔABC cân tại A)
=> ΔBKC = ΔCIB (c.h - g.n)
=> BK = CI (2 cạnh tương ứng)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) Xét tam giác BIM và CKM có
góc BIM=góc CKM(đối đỉnh)
BM=CM(gt)
góc BMI= góc CMK(đối đỉnh)
=>tam giác...=tam giác ...(cạnh huyền-góc nhọn)
=>IM=KM
Xét tam giác BKM và tam giác CIM có
BM=MC(gt)
góc BMK= góc CMI(đối đỉnh)
IM=MK(cmt)
=>tam giác ...=...(c-g-c)
=>BK=CI(đpcm)
=>góc MBK= góc ICM
mà 2 góc này nằm ở vị trí so le trong nên BK//CI
vậy BK//CI
b)khó quá mấy chế ui
hình như bn viết thiếu đề bài
đúng mà