Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
TA CÓ:
IM là cạnh chung
BI=MN(gt)
góc MIB=góc IMN (AB//MN)
TAM giác IBM=Tam giác INM(c-g-c)
góc BMI=góc MIN
suy ra IM//AC
Xét tam giác IBM và tam giác MNI ta có
MI=MI canh chung
BI= MN (gt)
góc MIB = góc IMN ( 2 góc so letrong và AB//MN)
-> tam giac IBM = tam giac MNI (c-g-c)
-> góc BMI = góc MIN
mà 2 góc o vi tri sole trong
nên IM //AC
MN // AB nên ∠NMC=∠ABC∠NMC=∠ABC (đồng vị)
ΔIBM=ΔNMCΔIBM=ΔNMC(c. g. c) nên ∠IMB=∠ACB.∠IMB=∠ACB.Mà hai góc này ở vị trí đồng vị nên IM // AC.
a: Xét ΔBIE và ΔMIA có
\(\widehat{IEB}=\widehat{IAM}\)(hai góc so le trong, BE//AM)
IE=IA
\(\widehat{BIE}=\widehat{MIA}\)(hai góc đối đỉnh)
Do đó: ΔBIE=ΔMIA
=>BE=AM
b: Xét ΔIAN và ΔIEC có
IA=IE
\(\widehat{AIN}=\widehat{EIC}\)(hai góc đối đỉnh)
IN=IC
Do đó: ΔIAN=ΔIEC
=>\(\widehat{IAN}=\widehat{IEC}\)
mà hai góc này là hai góc ở vị trí so le trong
nên AN//EC
Ta có: AN//EC
AM//EC
AN,AM có điểm chung là A
Do đó: N,A,M thẳng hàng
Xét tam giác IBM và tam giác INM ta có :
IM cạnh chung
BI = MN ( gt )
góc MIB = góc IMN ( so le trong , AB // MN )
=> tam giác IBM = tam giác INm ( c-g-c )
=> góc BMI = góc MIn ( ở vị trí so le trong )
=> IM // AC ( đpcm )