K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 4 2017

A B C D E F

a) xét tam giác ABE và tam giác ACF có:

góc BAE=góc CAF (AD là phân giác góc BAC)

góc AEB=góc AFC=90 độ

\(\Rightarrow\Delta ABE\infty\Delta ACF\left(g.g\right)\)

xét tam giác BDE và tam giác CDF có:

góc CDF= góc BDE(đối đỉnh)

góc BED= góc CFD=90 độ

\(\Rightarrow\Delta BDE\infty\Delta CDF\left(g.g\right)\)

b) ta có: AD là phân giác góc BAC nên \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\left(1\right)\)

\(\Delta ABE\infty\Delta ACF\Rightarrow\dfrac{AB}{AC}=\dfrac{AE}{AF}\) (2)

\(\Delta BDE\infty\Delta CDF\Rightarrow\dfrac{BD}{CD}=\dfrac{DE}{DF}\left(3\right)\)

từ (1),(2),(3) \(\Rightarrow\dfrac{AE}{AF}=\dfrac{DE}{DF}\Rightarrow AE\cdot DF=DE\cdot AF\)

29 tháng 3 2016

a) + Xét 2 tam giác ABE và tam giác ACF có

     Góc AEB = góc AFC ( = 90 )

     Góc BAE = góc CAF

\(\Rightarrow\) ​tam giác ABE đồng dạng vs tam giác ACF ( g.g )

     + Xét 2 tam giác BDE và tam giác CDF có

      Góc BED = góc DFC

      Do BE vuông góc với AD, Cf vuông góc với AD

      \(\Rightarrow\) BE // CF

     \(\Rightarrow\) góc EBD = góc DCF ( 2 góc ở vị trí so le trong )

\(\Rightarrow\) tam giác BDE đồng dạng với tam giác CDF ( g.g )

b) Do tam giác ABE đồng dạng vs tam giác ACF

\(\Rightarrow\frac{EA}{FA}=\frac{BE}{CF}\)                (1)

     Do  tam giác BDE đồng dạng với tam giác CDF

\(\Rightarrow\frac{BE}{CF}=\frac{DE}{DF}\)                (2)

Từ (1) và (2) \(\Rightarrow\) \(\Rightarrow\) \(\frac{EA}{FA}=\frac{DE}{DF}\) \(\left(=\frac{BE}{CF}\right)\) \(\Leftrightarrow\)  \(AE.DF=FA.DE\)

29 tháng 3 2016

mình chưa học cấp 2 

27 tháng 3 2016

giờ này mà bn vẫn hok cái này à?

27 tháng 3 2016

ukm, mình là người học chậm, mong bạn thông cảm

Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằnga, Tứ giác AIHk là hình chữ nhật  b, \(\Delta AKI\) \(\sim\Delta ABC\)c, Tính diện tích \(\Delta ABC\)Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cma, C/m : \(\Delta ABE\sim\Delta...
Đọc tiếp

Bài 1 : cho \(\Delta ABC\) vuông tại A , đường cao AH (H thuộc BC) . Biết BH =4cm , CH= 9cm . Gọi I,K lần lượt là hình chiếu của H lên AB và AC . Chứng minh rằng

a, Tứ giác AIHk là hình chữ nhật  

b, \(\Delta AKI\) \(\sim\Delta ABC\)

c, Tính diện tích \(\Delta ABC\)

Bài 2 : Cho hình thang vuông ABCD ( góc A = góc D =\(90^0\) ) , AB=6cm , CD=12 cm, AD=17 cm . Trên cạch AD , đặt đoạn AE = 8 cm

a, C/m : \(\Delta ABE\sim\Delta DEC\)

b, tính tỉ số diện tích \(\Delta ABE\) và diện tích \(\Delta DEC\)

c, Tính BC

Bài 3: Cho tam giác ABC vuông tại A , có AB=3cm, AC=5cm , đường phân giác AD . Đường vuông góc với DC cắt AC ở E

a, Chứng minh rằng \(\Delta ABC\sim\Delta DEC\)

b, Tính độ dài các đoạn thẳng BC , BD

c, Tính độ dài AD

d, Tính diện tích \(\Delta ABC\) và diện tích tứ giác ABDE

2
23 tháng 8 2019

Bài 1)

a) Tứ giác AIHK có 3 góc vuông \(\widehat{HKA}=\widehat{HIA}=\widehat{KAI}=90^0\)

Nên suy ra góc còn lại cũng vuông.Tứ giác có 4 góc vuông là hình chữ nhật

b) Câu này không đúng rồi bạn 

Nếu thực sự hai tam giác kia đồng dạng thì đầu bài phải cho ABC vuông cân 

Vì nếu góc AKI = góc ABC = 45 độ ( IK là đường chéo đồng thời là tia phân giác của hình chữ nhật)

c) Ta có : Theo hệ thức lượng trong tam giác ABC vuông

\(AB^2=BC.BH=13.4\)

\(\Rightarrow AB=2\sqrt{13}\)

\(AC=\sqrt{9\cdot13}=3\sqrt{13}\)

Vậy \(S_{ABC}=\frac{AB\cdot AC}{2}=\frac{6\cdot13}{2}=39\left(cm^2\right)\)

23 tháng 8 2019

Bài 2)

a) \(ED=AD-AE=17-8=9\)

Xét tỉ lệ giữa hai cạnh góc vuông trong hai tam giác ABE và DEC ta thấy

\(\frac{AB}{AE}=\frac{ED}{DC}\Leftrightarrow\frac{6}{8}=\frac{9}{12}=\frac{3}{4}\)

Vậy \(\Delta ABE~\Delta DEC\)

b) \(\frac{S_{ABE}}{S_{DEC}}=\frac{AB\cdot AE\cdot\frac{1}{2}}{DE\cdot DC\cdot\frac{1}{2}}=\frac{6\cdot8}{9\cdot12}=\frac{4}{9}\)

c) Kẻ BK vuông góc DC.Suy ra tứ giác ABKD là hình chữ nhật vì có 4 góc vuông 

Nên BK = AD và AB = DK 

\(\Rightarrow KC=DC-DK=12-6=6\)

Theo định lý Pytago ta có

\(BC=\sqrt{BK^2+KC^2}=\sqrt{17^2+6^2}=5\sqrt{13}\)

17 tháng 6 2021

A B C H I K

a, bạn tự làm nhé 

b, Xét tam giác ABH và tam giác CAH ta có 

^AHB = ^CHA = 900

^ABH = ^CAH ( cùng phụ ^BAH )

Vậy tam giác ABH  ~ tam giác CAH ( g.g )

\(\Rightarrow\frac{AH}{CH}=\frac{BH}{AH}\Rightarrow AH^2=BH.CH\)

17 tháng 6 2021

c, mình làm hơi tắt nhé, bạn dùng tỉ lệ thức xác định tam giác đồng dạng nhé

Dễ có :  \(AH^2=AK.AC\)(1) 

\(AH^2=AI.AB\)(2)  

Từ (1) ; (2) suy ra : \(AK.AC=AI.AB\Rightarrow\frac{AK}{AB}=\frac{AI}{AC}\)

Xét tam giác AIK và tam giác ACB

^A _ chung 

\(\frac{AK}{AB}=\frac{AI}{AC}\)( cmt )

Vậy tam giác AIK ~ tam giác ACB ( c.g.c )

12 tháng 5 2018

a)  Xét  \(\Delta ABC\)và    \(\Delta HBA\)có:

         \(\widehat{B}\) chung

        \(\widehat{BAC}=\widehat{BHA}=90^0\)

suy ra:    \(\Delta ABC~\Delta HBA\)  (g.g)

b)  Xét   \(\Delta AIH\)và     \(\Delta AHB\)có:

        \(\widehat{AIH}=\widehat{AHB}=90^0\)

        \(\widehat{IAH}\)  chung

suy ra:    \(\Delta AIH~\Delta AHB\) (g.g)

\(\Rightarrow\)\(\frac{AI}{AH}=\frac{AH}{AB}\)  \(\Rightarrow\)  \(AI.AB=AH^2\)  (1)

Xét    \(\Delta AHK\)và     \(\Delta ACH\)có:

    \(\widehat{HAK}\)chung

   \(\widehat{AKH}=\widehat{AHC}=90^0\)

suy ra:   \(\Delta AHK~\Delta ACH\)  (g.g)

\(\Rightarrow\)\(\frac{AH}{AC}=\frac{AK}{AH}\)

\(\Rightarrow\)\(AK.AC=AH^2\)    (2)

Từ (1) và (2) suy ra:    \(AI.AB=AK.AC\)

c)   \(S_{ABC}=\frac{1}{2}.AH.BC=20\)cm2

Tứ giác  \(HIAK\)có:     \(\widehat{HIA}=\widehat{IAK}=\widehat{AKH}=90^0\)

\(\Rightarrow\)\(HIAK\)là hình chữ nhật

\(\Rightarrow\)\(AH=IK=4\)cm

Ta có:   \(AI.AB=AK.AC\) (câu b)

 \(\Rightarrow\)\(\frac{AI}{AC}=\frac{AK}{AB}\)

Xét    \(\Delta AIK\)và    \(\Delta ACB\)có:

    \(\widehat{IAK}\)chung

   \(\frac{AI}{AC}=\frac{AK}{AB}\) (cmt)

suy ra:   \(\Delta AIK~\Delta ACB\)  (c.g.c)

\(\Rightarrow\)\(\frac{S_{AIK}}{S_{ACB}}=\left(\frac{IK}{BC}\right)^2=\frac{4}{25}\)

\(\Rightarrow\)\(S_{AIK}=\frac{4}{25}.S_{ACB}=3,2\)cm2

1 tháng 4 2019

a) Xét tam giác ABC và tam giác HBA có Góc ABC chungg,góc BHA=góc BAC=90 độ

=> Tam giác ABC đồng dạng với tam giác HBA(gg)=> \(\frac{AB}{HB}=\frac{BC}{AB}\)=> AB^2=BH.BC

1 tháng 4 2019

b)Tam giác ABC có BF là phân giác góc ABC=>\(\frac{BC}{AB}=\frac{FC}{AF}\)mà \(\frac{AB}{HB}=\frac{BC}{AB}\)=>\(\frac{AB}{BH}=\frac{FC}{AF}\left(1\right)\)

Tam giác ABH có BE là phân giác goc ABH =>\(\frac{BA}{BH}=\frac{AE}{EH}\left(2\right)\)

Từ 1 và 2=>\(\frac{FC}{AF}=\frac{AE}{EH}=>\frac{EH}{AE}=\frac{AF}{FC}\)