\(\perp\) A,đường cao AH
a/Chứng minh tam giác ABH đồng dạng tam g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2019

A B C E H F

2 tháng 5 2019

góc AHB = CAB=90

góc ABC chung

=> 2 tam trên đồng dạng (g-g)

=> AB/CB=BH/Ba

=>AB^2=BH.BC=4.13=52

=> AB= \(\sqrt{52}\)

25 tháng 6 2018

A B C H E F

a) Xét hai tam giác ABC và HBA có:

 \(\widehat{BAC}=\widehat{BHA=1V}\)

\(\widehat{ABC}\left(\widehat{HBA}\right)\): góc chung

Vậy \(\Delta\)ABC ~ \(\Delta\)HBA.

b) Ta có: 

AB2 = BH . BC (vì \(\Delta\)ABC ~ \(\Delta\)HBA.)

       = 4.13

       = 52

\(\Rightarrow\)AB = \(\sqrt{52}=\)\(2\sqrt{13}\)(cm)

Vì \(\Delta\)ABH vuông tại H 

\(\Rightarrow\)AH2 = AB2 - BH2

                = 36

\(\Rightarrow\)AH = 6(cm)

c) Xét hai tam giác AHE và CHF có:

 \(\widehat{HAE}=\widehat{HCF}\)(cùng phụ với \(\widehat{HAC}\))

\(\widehat{AHE}=\widehat{CHF}\) ( cùng phụ với \(\widehat{AHF}\))

Vậy \(\Delta\)AHE ~ \(\Delta\)CHF.

\(\Rightarrow\frac{AE}{CF}=\frac{AH}{CH}\Rightarrow AE.CH=AH.CF\)(đpcm)

d) 

a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có

góc B chung

=>ΔABH đồng dạng với ΔCBA

b: ΔABH đồng dạng với ΔCBA
=>BA/BC=BH/BA

=>BA^2=BH*BC

=>BA=6cm

19 tháng 5 2019

bạn tự vẽ hinh nha

1)

Xét tam giác ABC có

hai đường cao BE và CD cắt nhau tại H nên H là trực tâm

do đó \(AH\perp BC\)

mà \(HM\perp BC\)

suy ra AH trùng với HM 

vậy A; H; M thẳng hàng

b) 

dễ chứng minh tam giác BHM đồng dạng với tam giác BCE \(\Rightarrow\frac{BH}{BC}=\frac{BM}{BE}\Rightarrow BH\cdot BE=BC\cdot BM\left(1\right)\)

dễ chứng minh tam giác CHM đồng dạng với tam giác CBD \(\Rightarrow\frac{CH}{BC}=\frac{CM}{CD}\Rightarrow CH\cdot CD=CM\cdot BC\left(2\right)\)

Từ (1) và (2) suy ra \(BH\cdot BE+CH\cdot CD=BM\cdot BC+CM\cdot BC=\left(BM+CM\right)\cdot BC=BC\cdot BC=BC^2\)

2)

a)

Xét tam giác ABC và tam giác DEC

có \(\widehat{BAC}=\widehat{CDE}\)

\(\widehat{ACB}\)chung

nên tam giác ABC đồng dạng với tam giác DEC

\(\Rightarrow\frac{AB}{DE}=\frac{AC}{CD}\left(1\right)\)

b)

Xét tam giác ABC

có AD là đường phân giác

\(\Rightarrow\frac{BD}{CD}=\frac{AB}{AC}\Rightarrow\frac{AB}{BD}=\frac{AC}{CD}\left(2\right)\)

Từ (1) và (2) suy ra

\(\frac{AB}{DE}=\frac{AB}{BD}\Rightarrow DE=BD\)