Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình gợi ý tí nha. Tại mình làm là đáp án của mình còn hơn là cop tài liệu đó bạn!
Lúc đầu bạn chứng minh tam giác AOB = tam giác A'OC (cgc)
Rồi có AB=A'C rồi chứng minh ra Tam giác ABC = tam giác A'CB nha!
Cho tam giac ABC co AB < AC. Cac tia phan giac cua goc B va goc C cat nhau tai O. So sanh OB va OC
Cho tam giac ABC co AB < AC, M la trung diem cua canh BC. So sanh so do goc BAM va goc CAM
1.a) \(\Delta ABC\)cân tại A\(\Rightarrow AB=AC\).Mà \(AD=AC\Rightarrow AB=AD\)
Xét \(\Delta ABD\)có \(AB=AD\Rightarrow\Delta ABD\)cân tại A
b)Có \(\widehat{ABC}=\widehat{ACB}\left(1\right)\)( do \(\Delta ABC\)cân)
\(\widehat{ABD}=\widehat{ADB}\left(2\right)\)( do \(\Delta ABD\)cân )
Từ \(\left(1\right);\left(2\right)\Rightarrow\widehat{ABC}+\widehat{ABD}=\widehat{ACB}+\widehat{ADB}\)
\(\Rightarrow\widehat{DBC}=\widehat{ACB}+\widehat{ADB}\)hay \(\widehat{DBC}=\widehat{DCB}+\widehat{BDC}\left(dpcm\right)\)
2.
a)Nối A vs C
có\(OA=0C;AB=CD\Rightarrow OA+AB=OC+CD\)
hay \(OB=OD\).Xét \(\Delta OBD\)có \(OB=OD\Rightarrow\Delta OBD\)cân tại O
b) Xét \(\Delta OAD\)và \(\Delta OCB\)có:
\(OA=OB\left(gt\right)\)
\(\widehat{AOB}:chung\)
\(OB=OD\left(cmt\right)\)
\(\Rightarrow\Delta OAD=\Delta OCB\left(c.g.c\right)\Rightarrow AD=CB\left(dpcm\right)\)
c)Có \(\Delta OAD=\Delta OCB\Rightarrow\widehat{ADO}=\widehat{CBO}\)
Xét \(\Delta ACD\)và \(\Delta CBA\)có: \(AD=CD\)
\(\widehat{ADO}=\widehat{CBO}\)
\(CD=BA\)
\(\Rightarrow\Delta ACD=\Delta CBA\left(c.g.c\right)\Rightarrow\widehat{CAD}=\widehat{BCA}\Rightarrow\Delta IAC\)cân tại I
Làm tương tự bạn => tam giác IBD cân tại I ( tam giác ADB = tam giác CBD => Góc ADB= góc CBD)