K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2020

Ta có: \(\sqrt{\frac{AM}{A_1M}}+\sqrt{\frac{BM}{B_1M}}+\sqrt{\frac{CM}{C_1M}}=\sqrt{\frac{S_2+S_3}{S_1}}+\sqrt{\frac{S_1+S_3}{S_2}}+\sqrt{\frac{S_1+S_2}{S_3}}\)

\(\ge\sqrt{\frac{\left(\sqrt{S_2}+\sqrt{S_3}\right)^2}{2S_1}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_3}\right)^2}{2S_2}}+\sqrt{\frac{\left(\sqrt{S_1}+\sqrt{S_2}\right)^2}{2S_3}}\)

\(=\frac{1}{\sqrt{2}}\left(\frac{\sqrt{S_2}+\sqrt{S_3}}{\sqrt{S_1}}+\frac{\sqrt{S_1}+\sqrt{S_3}}{\sqrt{S_2}}+\frac{\sqrt{S_1}+\sqrt{S_2}}{\sqrt{S_3}}\right)\frac{1}{2}\cdot6=3\sqrt{2}\)

Dấu "=" xảy ra khi S=S2=S3 <=> M là trọng tâm \(\Delta ABC\)

6 tháng 2 2022

JK trong tim tui òi

26 tháng 8 2020

a,
Kẻ BE,CF vuông góc với AM.
Ta có:
MA.BC = MA.(BP+CP) ≥ MA.(BE+CF) = 2 SABM + 2 SCAM
Tuong tu:
MB.CA ≥ 2SBCM + 2 SABM
MC.AB ≥ 2SCAM + 2 SBCM
Suy ra:
MA.BC + MB.CA + MC.AB ≥ 2 ( 2 SABM + 2SBCM + 2SCAM) = 4SABC
dpcm.
Dấu = xảy ra khi M là trực tâm.