Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(\frac{OM}{AM}=\frac{S_{BOC}}{S_{ABC}}\) ; \(\frac{ON}{BN}=\frac{S_{AOC}}{S_{ABC}}\) ; \(\frac{OP}{CP}=\frac{S_{AOB}}{S_{ABC}}\)
\(\Rightarrow\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}=\frac{S_{ABC}}{S_{ABC}}=1\)
Áp dụng bđt Bunhiacopxki, ta có :
\(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}=\left(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\right).\left(\frac{OM}{AM}+\frac{ON}{BN}+\frac{OP}{CP}\right)\ge\)
\(\ge\left(\sqrt{\frac{AM}{OM}.\frac{OM}{AM}}+\sqrt{\frac{BN}{ON}.\frac{ON}{BN}}+\sqrt{\frac{CP}{OP}.\frac{OP}{CP}}\right)^2=\left(1+1+1\right)^2=9\)
Vậy \(\frac{AM}{OM}+\frac{BN}{ON}+\frac{CP}{OP}\ge9\) (đpcm)
Đặt \(S_{BOC}=x^2,S_{AOC}=y^2,S_{AOB}=z^2\) \(\Rightarrow S_{ABC}=S_{BOC}+S_{AOC}+S_{AOB}=x^2+y^2+z^2\)
Ta có : \(\frac{AD}{OD}=\frac{S_{ABC}}{S_{BOC}}=\frac{AO+OD}{OD}=1+\frac{AO}{OD}=\frac{x^2+y^2+z^2}{x^2}=1+\frac{y^2+z^2}{x^2}\)
\(\Rightarrow\frac{AO}{OD}=\frac{y^2+z^2}{x^2}\Rightarrow\sqrt{\frac{AO}{OD}}=\sqrt{\frac{y^2+z^2}{x^2}}=\frac{\sqrt{y^2+z^2}}{x}\)
Tương tự ta có \(\sqrt{\frac{OB}{OE}}=\sqrt{\frac{x^2+z^2}{y^2}}=\frac{\sqrt{x^2+z^2}}{y};\sqrt{\frac{OC}{OF}}=\sqrt{\frac{x^2+y^2}{z^2}}=\frac{\sqrt{x^2+y^2}}{z}\)
\(\Rightarrow P=\frac{\sqrt{x^2+y^2}}{z}+\frac{\sqrt{y^2+z^2}}{x}+\frac{\sqrt{x^2+z^2}}{y}\ge\frac{x+y}{\sqrt{2}z}+\frac{y+z}{\sqrt{2}x}+\frac{x+z}{\sqrt{2}y}\)
\(=\frac{1}{\sqrt{2}}\left[\left(\frac{x}{y}+\frac{y}{x}\right)+\left(\frac{y}{z}+\frac{z}{y}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\right]\ge\frac{1}{\sqrt{2}}\left(2+2+2\right)=3\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=z\Rightarrow S_{BOC}=S_{AOC}=S_{AOB}=\frac{1}{3}S_{ABC}\)
\(\Rightarrow\frac{OD}{OA}=\frac{OE}{OB}=\frac{OF}{OC}=\frac{1}{3}\Rightarrow\)O là trọng tâm của tam giác ABC
Vậy \(MinP=3\sqrt{2}\) khi O là trọng tâm của tam giác ABC