Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn đáp án A
Đường tròn (S; R) có
+ Chu vi hình tròn (S; R) là C = 4 π
+ Diện tích hình tròn (S; R) là S = 4 π . Khi cắt 1 4 hình tròn rồi dán lại để tạo ra mặt xung quanh của hình nón, ta có. Diện tích xung quanh hình nón là
Chu vi đáy của hình nón là
bán kính đáy của hình nón là r = 3 2
Đáp án B
Dễ có chu vi của đáy là hình tròn bằng: p = π d = 2 π a
Khoảng cách từ đỉnh đến một điểm thuộc vành của hình nón bằng:
SA =
Suy ra diện tích xung quanh hình nón là diện tích hình quạt có bán kính 2a và độ dài cung là 2 π a. Ta dễ tính được chu vi của hình tròn bán kinh 2a là 4 π a. Do đó diện tích hình quạt cần tính bằng nửa hình tròn này. Từ đây ta thu được kết quả: S x q = 2 πa 2 => Chọn đáp án B.
Đáp án A.
Gọi R là bán kính của hình cầu (S). Bài toán có thể quy về: “Cho đường tròn tâm O, bán kính R ngoại tiếp hình vuông ABCD và nội tiếp ∆ SEF đều” (hình vẽ).
=>Bán kính đáy và chiều cao của hình trụ (T) lần lượt là
và
Thể tích khối trụ là
Ta có ∆ SEF đều và ngoại tiếp đường tròn (O) nên O là trọng tâm của ∆ SEF.
Gọi H là trung điểm của EF thì
Hình vuông ABCD nội tiếp đường tròn (O) nên SH = 3OH = 3R
Bán kính đáy và chiều cao của hình nón (N) lần lượt là
Thể tích khối nón là
tham khảo
Để khoảng cách giữa hai điểm đó là \(R\sqrt{2}\) thì giữa hai đỉnh đó có 1 đỉnh.
Xác suất của biến cố đó là: \(\dfrac{8}{C^2_8}=\dfrac{2}{7}\)
\(\Rightarrow A\)
Đáp án B
Áp dụng định lý hàm số sin, ta có
Lai có:
Khi quay ∆ ABC quanh AC thì ∆ BHC tạo thành hình nón tròn xoay (N) có đường sinh
bán kính đáy
Diện tích xung quanh hình nón (N) là: