Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Tứ giác ABMC nội tiếp \(\Rightarrow\widehat{ABM}+\widehat{ACM}=180^0\)
Mà \(\widehat{ACM}+\widehat{MCE}=180^0\Rightarrow\widehat{ABM}=\widehat{MCE}\)
D và E cùng nhìn CM dưới 1 góc vuông \(\Rightarrow CDME\) nội tiếp
\(\Rightarrow\widehat{MCE}=\widehat{MDE}\) (cùng chắn ME) \(\Rightarrow\widehat{ABM}=\widehat{MDE}\)
Mặt khác D và F cùng nhìn BM dưới 1 góc vuông \(\Rightarrow BFDM\) nội tiếp
\(\Rightarrow\widehat{ABM}+\widehat{FDM}=180^0\)
\(\Rightarrow\widehat{MDE}+\widehat{FDM}=180^0\Rightarrow\) D, E, F thẳng hàng
![](https://rs.olm.vn/images/avt/0.png?1311)
a: Xét tứ giác OAIC có
\(\widehat{OAI}+\widehat{OCI}=180^0\)
Do đó: OAIC là tứ giác nội tiếp
Xét (O) có
IC là tiếp tuyến
IA là tiếp tuyến
Do đó: OI là tia phân giác của góc COA
Ta có: ΔOAC cân tại O
mà OI là đường phân giác
nên OI⊥AC(1)
Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Suy ra: CA⊥CB(2)
Từ (1) và (2) suy ra CB//OI
Câu b đề thiếu rồi bạn
Câu c đề sai bởi vì ΔACB vuông tại C rồi nên nếu đường cao AH thì H trùng với C rồi bạn
ko hỉu
cho tam giác ABC nội tiếp (O), lấy M bất kì D,E,F là hình chiếu của M trên BC,CA,AB
a)CMR D,E,F thẳng hàng
b) vẽ Ax là tiếp tuyến của(O) MH vuông góc với Ax cmr MH.MD=ME.MF