Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để mình hướng dẫn vậy :
a) Bạn tự chứng minh
b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm
c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng.
Để mình hướng dẫn vậy :
a) Bạn tự chứng minh
b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm
c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng.
a)góc BHF=90
góc BEF=90 (do góc BEF chắn \(\frac{1}{2}\)(O))
=>BHF+BEF=180
=>BEFH là tứ giác nội tiếp
a) xét tứ giác BNMC ta có : BNC = 90 (giả thiết)
BMC = 90 (giả thiết)
mà 2 góc này cùng chắng cung BC của tứ giác BNMC
\(\Rightarrow\) tứ giác BNMC nội tiếp (đpcm)
b) xét tứ giác ANHM ta có : ANH = 90 (giả thiết)
AMH = 90 (giả thiết)
\(\Rightarrow\) ANH + AMH = 180
mà 2 góc này ở vị trí đối nhau \(\Rightarrow\) tứ giác ANHM nội tiếp (đpcm)
+) CH vuông góc AB; Gọi D là giao của ( B; BC ) và ( A; AC ) => C; H ; D thẳng hàng
=> C; X ; D thẳng hàng
+) C; K; D; K1 nội tiếp ( B; BC ) và KK1 cắt CD tại X
=> \(\frac{XK}{XC}=\frac{XD}{XK_1}\Rightarrow XK.XK_1=XC.XD\)(1)
+) Tương tự C; Y; L; L1 nội tiếp (A; AC )
=> \(XL.XL_1=XC.XD\)(2)
Từ (1) và (2) => \(XL.XL_1=XK.XK_1\)
=> Dễ chứng minh đc KLK1L1 nội tiếp. ( - _ - ) đúng giờ :)