K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2015

Bài này là đề thi lớp 10 TPHCM năm rồi

12 tháng 4 2020

enytunyt

26 tháng 5 2016

Để mình hướng dẫn vậy : 

a) Bạn tự chứng minh

b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm

c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng. 

26 tháng 5 2016

Để mình hướng dẫn vậy : 
a) Bạn tự chứng minh
b) Vì I là trung điểm của PQ nên I cũng là trung điểm của AM. Gọi I' là giao điểm của OE và AM , chứng minh tam giác AFI' = tam giác MEI' rồi suy ra AI' = I'M=> I' trùng với I => đpcm
c) Bạn chứng minh tam giác MEA đều rồi => góc MAE = AEM = POM rồi tiếp tục suy ra OMP = OEA => tam giác đồng dạng. 

13 tháng 4 2016

Ban nao giai giup minh voi

13 tháng 4 2016

a)góc BHF=90 

  góc BEF=90 (do góc BEF chắn \(\frac{1}{2}\)(O))

=>BHF+BEF=180

=>BEFH là tứ giác nội tiếp

12 tháng 6 2017

a) xét tứ giác BNMC ta có : BNC = 90 (giả thiết)

BMC = 90 (giả thiết)

mà 2 góc này cùng chắng cung BC của tứ giác BNMC

\(\Rightarrow\) tứ giác BNMC nội tiếp (đpcm)

b) xét tứ giác ANHM ta có : ANH = 90 (giả thiết)

AMH = 90 (giả thiết)

\(\Rightarrow\) ANH + AMH = 180

mà 2 góc này ở vị trí đối nhau \(\Rightarrow\) tứ giác ANHM nội tiếp (đpcm)

9 tháng 3 2020

L1 A D C B L K X K1

+) CH vuông góc AB; Gọi D là giao của ( B; BC ) và ( A; AC ) => C; H ; D thẳng hàng 

=> C; X ; D thẳng hàng 

+) C; K; D; K1 nội tiếp ( B; BC ) và KK1 cắt CD tại X

=> \(\frac{XK}{XC}=\frac{XD}{XK_1}\Rightarrow XK.XK_1=XC.XD\)(1)

+) Tương tự C; Y; L; L1 nội tiếp (A; AC ) 

=> \(XL.XL_1=XC.XD\)(2)

Từ (1) và (2) => \(XL.XL_1=XK.XK_1\)

=> Dễ chứng minh đc KLK1L1 nội tiếp. ( - _ - )  đúng giờ :)