Ai làm nhanh nhất tik luôn

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2020

hình tự vẽ nha

kẻ tiếp tuyến Ax ( Ax khác phía với C' )

\(\Rightarrow Ax\perp OA\)\(\widehat{xAC}=\widehat{ABC}\)

Xét tứ giác BCB'C' có \(\widehat{BC'C}=\widehat{BB'C}=90^o\)nên tứ giác BC'B'C nội tiếp

\(\Rightarrow\widehat{C'BC}+\widehat{CB'C'}=180^o\)

Mà \(\widehat{AB'C'}+\widehat{C'B'C}=180^o\)

\(\Rightarrow\widehat{AB'C'}=\widehat{ABC}\)

Ta có : \(\widehat{AB'C'}+\widehat{B'AO}=\widehat{ABC}+\widehat{B'AO}=\widehat{xAC}+\widehat{B'AO}=\widehat{xAO}=90^o\)

\(\Rightarrow OA\perp B'C'\)

25 tháng 3 2018

a, Xét tứ giác BCB'C' có đỉnh C' và B' kề nhau và cùng nhìn đoạn BC dưới 1 góc 90o => Tứ giác BCB'C' là tứ giác nội tiếp

b, kẻ đường kính AK, gọi giao điểm của AO và B'C' là H

Ta có: góc BAK = 1/2 sđ cung BK ( góc nội tiếp) (1)

góc AC'B' = góc B'CB ( góc ngoài ) = 1/2 sđ cung AB ( góc nội tiếp) (2)

Từ (1) và (2) => góc BAK + AC'B' = \(\frac{sđcungBK}{2}+\frac{sđcungAB}{2}\)=sđ cung AK / 2 = 180o /2 = 90o

Theo tổng 3 góc trong 1 tam giác => góc AHC' = 90o

hay AO vuông góc C'B' (đpcm)

19 tháng 3 2023

cho mình hỏi tại sao góc AC'B' = góc B'CB ( góc ngoài ) = 1/2 sđ cung AB . Mình thấy góc AC'B' có bằng góc B'CB đâu 

26 tháng 2 2017

Tứ giác BCC'B' nội tiếp. Do đó góc AB'C'=góc ACB. Kẻ tiếp tuyến Ax tại A (về phía B đối với bờ AC), suy ra xAB=ACB (góc giữa tiếp tuyến và dây cung). Do đó góc xAB=góc AB'C', suy ra Ax song song B'C'. Mà OA vuông góc Ax, nên OA vuông góc B'C'.

20 tháng 8

Chúng ta sẽ giải quyết từng phần của bài toán một cách chi tiết.

a) Chứng minh tứ giác \(B C B^{'} C^{'}\) là tứ giác nội tiếp

Dữ kiện:

  • Tam giác \(A B C\) có ba góc nhọn, nội tiếp trong một đường tròn tâm \(O\).
  • \(B B^{'}\) và \(C C^{'}\) là các đường cao của tam giác \(A B C\).
  • \(A O\) cắt đường tròn tại \(D\) và cắt đoạn \(B^{'} C^{'}\) tại \(I\).

Chứng minh:
Để chứng minh tứ giác \(B C B^{'} C^{'}\) là tứ giác nội tiếp, ta cần chứng minh rằng tổng các góc đối diện của tứ giác này bằng \(180^{\circ}\).

  • Xét các góc của tứ giác \(B C B^{'} C^{'}\):
    • \(\angle B C B^{'}\) là góc giữa các cạnh \(B C\) và \(B^{'} C^{'}\).
    • \(\angle B^{'} C^{'} B\) là góc giữa các cạnh \(B^{'} C^{'}\) và \(B C\).
  • Áp dụng định lý góc nội tiếp:
    Do tam giác \(A B C\) nội tiếp trong một đường tròn, ta có:
    • \(\angle B O C = 2 \times \angle B A C\) (do góc tại tâm \(O\) bằng hai lần góc nội tiếp đối diện).
    • \(\angle B C B^{'} = \angle B A C\), vì \(\angle B C B^{'}\) là góc nội tiếp của cung \(B C\).
  • Tính tổng các góc đối diện trong tứ giác \(B C B^{'} C^{'}\):
    • Tổng các góc đối diện \(\angle B C B^{'}\) và \(\angle B^{'} C^{'}\) là \(180^{\circ}\), từ đó ta suy ra tứ giác \(B C B^{'} C^{'}\) là tứ giác nội tiếp.

b) Chứng minh tam giác \(A B^{'} C^{'}\) đồng dạng với tam giác \(A B C\)

Dữ kiện:

  • Tam giác \(A B C\) là tam giác nhọn nội tiếp trong đường tròn tâm \(O\).
  • \(B^{'}\) và \(C^{'}\) là các điểm trên các đường cao \(B B^{'}\) và \(C C^{'}\) của tam giác \(A B C\).

Chứng minh:
Để chứng minh tam giác \(A B^{'} C^{'}\) đồng dạng với tam giác \(A B C\), ta sẽ chứng minh rằng các góc tương ứng của hai tam giác này bằng nhau.

  1. Góc \(\angle A B C = \angle A B^{'} C^{'}\):
    • Do \(B^{'}\) là chân đường cao từ \(B\) và \(C^{'}\) là chân đường cao từ \(C\), ta có góc \(\angle A B C\) và góc \(\angle A B^{'} C^{'}\) đều là góc vuông (vì các đường cao tạo góc vuông với các cạnh tương ứng).
  2. Góc \(\angle A C B = \angle A C^{'} B^{'}\):
    • Tương tự, góc \(\angle A C B\) và \(\angle A C^{'} B^{'}\) đều bằng nhau vì các đường cao và các điểm tương ứng tạo nên các góc vuông.
  3. Tỷ số các cạnh tương ứng bằng nhau:
    • Vì \(A B^{'}\) là một đoạn thẳng trên đường cao và do tính chất của đường cao trong tam giác vuông, các cạnh của tam giác \(A B^{'} C^{'}\) sẽ có tỷ lệ bằng với các cạnh của tam giác \(A B C\), từ đó hai tam giác này đồng dạng.

c) Chứng minh \(B^{'} I D C^{'}\) là tứ giác nội tiếp

Dữ kiện:

  • Tam giác \(A B C\) có ba góc nhọn, nội tiếp trong đường tròn tâm \(O\).
  • \(B B^{'}\) và \(C C^{'}\) là các đường cao của tam giác \(A B C\).
  • \(A O\) cắt đường tròn tại \(D\) và cắt đoạn \(B^{'} C^{'}\) tại \(I\).

Chứng minh:
Để chứng minh tứ giác \(B^{'} I D C^{'}\) là tứ giác nội tiếp, ta sẽ chứng minh rằng tổng các góc đối diện của tứ giác này bằng \(180^{\circ}\).

  1. Xét các góc của tứ giác \(B^{'} I D C^{'}\):
    • \(\angle B^{'} I D\) và \(\angle B^{'} C^{'}\) là hai góc đối diện.
    • \(\angle D I C^{'}\) và \(\angle B^{'} I C\) là hai góc còn lại.
  2. Áp dụng định lý góc nội tiếp:
    • Vì \(A O\) cắt đường tròn tại \(D\), và \(D\) là điểm thuộc cung tròn \(B^{'} C^{'}\), ta có các góc \(\angle B^{'} I D\) và \(\angle D I C^{'}\) là các góc nội tiếp của các cung tròn tương ứng.
    • Do đó, tổng các góc đối diện của tứ giác \(B^{'} I D C^{'}\) sẽ bằng \(180^{\circ}\), suy ra tứ giác \(B^{'} I D C^{'}\) là tứ giác nội tiếp.

Kết luận:

  • Tứ giác \(B C B^{'} C^{'}\) là tứ giác nội tiếp.
  • Tam giác \(A B^{'} C^{'}\) đồng dạng với tam giác \(A B C\).
  • Tứ giác \(B^{'} I D C^{'}\) là tứ giá
20 tháng 8

Tham khảo

14 tháng 3 2018

ko bít