Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi BE, CF, AN là đường cao của TAM GIÁC ABC
Vì BE//DC⇒BH//DC(1)
CF//BD⇒CD//BH(2)
Từ (1)và(2)⇒BHCD là hình bình hành
Bẹn tự vẽ hình nhé
Vì A' đối xứng với B qua A => AA' =AB
=. \(\overrightarrow{A'A}=\overrightarrow{AB}\)
Vì B' đối xứng với C qua B => \(\overrightarrow{B'B}=\overrightarrow{BC}\)
Vì C' đối xứng với A qua C => \(\overrightarrow{C'C}=\overrightarrow{CA}\)
Ta có: \(\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\left(\overrightarrow{OA'}+\overrightarrow{A'A}\right)+\left(\overrightarrow{OB'}+\overrightarrow{B'B}\right)+\left(\overrightarrow{OC'}+\overrightarrow{C'C}\right)\)
\(=\left(\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\right)+\left(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}\right)\)
Lại có: \(\overrightarrow{A'A}+\overrightarrow{B'B}+\overrightarrow{C'C}=\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CA}\)\(=\left(\overrightarrow{AB}+\overrightarrow{BC}\right)+\overrightarrow{CA}=\overrightarrow{AC}+\overrightarrow{CA}=\overrightarrow{AC}-\overrightarrow{AC}=0\)
\(\Rightarrow\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}+0=\overrightarrow{OA'}+\overrightarrow{OB'}+\overrightarrow{OC'}\)
Câu 1:
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó MN là đường trung bình
=>MN//BC và MN=BC/2(1)
Xét ΔHBC có
E là trung điểm của HB
F là trung điểm của HC
Do đó: EF là đường trung bình
=>EF//BC và EF=BC/2(2)
Từ (1) và (2) suy ra MN//EF và MN=EF
=>MNFE là hình bình hành
SUy ra: VECTO MN=VECTO EF
help với mn