Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Cho tam giác nhọn ABC (AB<AC) nội tiếp đường tròn (O). Gọi H là trực tâm của tam giác ABC, K là giao điểm thứ hai của AH với đường tròn (O). Đường thẳng đi qua H và vuông góc với OA cắt BC ở I. Chứng minh rằng IK là tiếp tuyến của đường tròn (O)
~~~~~~~~~ Bài làm ~~~~~~~~~
A B C O I K H Q D
Ta có: \(\widehat{HBD}=\widehat{DAC}\) (Cùng phụ với \(\widehat{ACB}\))
\(\widehat{KBD}=\widehat{DAC}\)( Góc nối tiếp cùng chắn cung \(KC\))
\(\Rightarrow\widehat{HBD}=\widehat{KBD}\)
Ta lại có: \(BD\perp HK\)
\(\Rightarrow BD\) là đường trung trực của \(HK\)
\(\Rightarrow\Delta IHK\) cân tại \(I\)
\(\Rightarrow\widehat{BKD}=\widehat{BHD}=\widehat{AHQ}\)
Lại có:\(\widehat{DKO}=\widehat{HAO}\)( \(\Delta OKA\) cân tại \(O\))
Vì vậy: \(\widehat{DKO}+\widehat{BKD}=\widehat{HAO}+\widehat{AHQ}=90^0\)
\(\Rightarrow\widehat{KIO}=90^0\)
\(\Rightarrow IK\)là tiếp tuyến của đường tròn \(\left(O\right)\)
(Hình vẽ chỉ mang tính chất minh họa cái hình vẽ gần cả tiếng đồng hồ :)) )
A B C O F E K S P D Q M S'
a) Ta sẽ chứng minh SK đi qua điểm O cố định. Thật vậy, gọi OK cắt AP tại S', ta cần chứng minh S' trùng với S.
Ta có: ^CKF + ^BAC = ^CKF + ^CPE = ^CKF + ^CKE = 1800 => 3 điểm E,K,F thẳng hàng
Thấy ^FPE + ^PEF + ^PFE = ^BPC + ^PBK + ^CPK = ^OBP + ^OCP + ^PBK + ^CPK = ^OBK + ^OCK = 1800
=> Tứ giác BOCK nội tiếp. Mà OB = OC => ^BKO = ^CKO. Lại có: ^DKB = ^AEB = ^PKC
Suy ra: ^BKO - ^DKB = ^CKO - ^PKC => ^AKO = ^OKP
Mặt khác: ^AOK = ^AOB + ^BOK = 2.^ACB + ^BCK = ^ACK + ^ACB = ^BPK + ^APB = ^APK
=> Tứ giác AOPK nội tiếp => ^OAP = ^OKP => ^OAS' = ^OKA (Vì ^AKO = ^OKP)
=> \(\Delta\)OAS' ~ \(\Delta\)OKA (g.g) => OA2 = OS'.OK => OB2 = OS'.OK => \(\Delta\)OS'B ~ \(\Delta\)OBK (c.g.c)
=> ^OS'B = ^OBK. Tương tự: ^OS'C = ^OCK. Do đó: ^OS'B + ^OS'C = ^OBK + ^OCK = 1800 (Vì tứ giác BOCK nội tiếp)
=> 3 điểm B,S',C thẳng hàng => BC cắt AP tại S'. Vậy nên S trùng S' => 3 điểm O,S,K thẳng hàng => ĐPCM.
b) Từ câu a ta có: OD2 = OS.OK => \(\Delta\)ODS ~ \(\Delta\)OKD (c.g.c) => ^ODS = ^OKD = ^OKA = ^OAS
=> Tứ giác AOSD nội tiếp hay 4 điểm A,O,P,S cùng thuộc 1 đường tròn (1)
Ta lại có: ^CAP + ^PAD = ^CAD = ^CBD = ^BMD + ^BDM = ^SMD + ^BDQ = ^SMD + ^BAQ
Mà ^CAP = ^BAQ (gt) nên ^PAD = ^SMD hay ^SMD = ^SAD => 4 điểm A,S,D,M cùng thuộc 1 đường tròn (2)
Từ (1);(2) => 5 điểm A,O,S,P,M cùng thuộc 1 đường tròn. Do OA = OD nên ^AMO = ^DMO hay ^AMO = ^QMO
Xét \(\Delta\)AOQ cân tại O, một điểm M sao cho ^AMO = ^QMO (cmt). Dễ c/m AM = QM (Gợi ý: Lấy đối xứng của M qua OA)
Từ đó: OM là trung trực của AQ => OM vuông góc AQ (đpcm).
A B C D E F O I J M P Q L K T
a) Vì tứ giác BFEC nội tiếp nên \(\widehat{PFB}=\widehat{ACB}=\widehat{PBF}\) suy ra \(PF=PB\)
Suy ra \(MP\perp AB\) vì MP là trung trực của BF. Do đó \(MP||CF\). Tương tự \(MQ||BE\)
b) Dễ thấy M,I,J đều nằm trên trung trực của EF cho nên chúng thẳng hàng. Vậy IJ luôn đi qua M cố định.
c) Gọi FK cắt AD tại T ta có \(FK\perp AD\) tại T. Theo hệ thức lượng \(IE^2=IF^2=IT.IL\)
Suy ra \(\Delta TIE~\Delta EIL\). Lại dễ có \(EI\perp EM\), suy ra ITKE nội tiếp
Do vậy \(\widehat{ILE}=\widehat{IET}=\widehat{IKT}=90^0-\widehat{LIK}\). Vậy \(IK\perp EL.\)
Bài 2:
O A B C E D M
Ta thấy EB // AC nên \(\frac{EB}{MA}=\frac{ED}{DA}\Rightarrow AM.ED=EB.DA\) (1)
Do EB//AC nên \(\widehat{BCA}=\widehat{CBE}\Rightarrow\widebat{EC}=\widebat{CB}\)
Vậy thì \(2.\widehat{DMC}=\widebat{BC}-\widebat{DC}=\widebat{EC}+\widebat{EB}-\widebat{DC}=\left(\widehat{CB}-\widebat{DC}\right)+\widebat{EB}=\widebat{ED}=2.\widehat{DCE}\)
\(\Rightarrow\widehat{DMC}=\widehat{DCE}\)
Mà \(\widehat{DEC}=\widehat{DCM}\) (Góc nội tiếp và góc tạo bởi tiếp tuyến và dây cung cùng chắn một cung)
\(\Rightarrow\Delta EDC\sim\Delta CDM\left(g-g\right)\Rightarrow\frac{ED}{CD}=\frac{EC}{CM}\Rightarrow CM.ED=CD.EC\) (2)
Từ (1) và (2) ta thấy, muốn chứng minh CM = MA, ta chỉ cần chứng minh EB.DA = CD.EC
Lại có \(\widebat{CE}=\widebat{CB}\Rightarrow CE=CB\)
Vậy ta cần chứng minh: EB.DA = CD.BC
Ta có \(\widehat{DAC}=\frac{\widebat{EC}-\widebat{DC}}{2}=\frac{\widebat{BC}-\widebat{DC}}{2}=\frac{\widebat{DB}}{2}=\widehat{DCB}\)
Vậy nên ta có ngay \(\Delta DBC\sim\Delta DCA\left(g-g\right)\Rightarrow\frac{BD}{CD}=\frac{BC}{CA}\Rightarrow BC.CD=BD.CA\left(3\right)\)
Ta dễ dàng thấy ngay \(\Delta BDA\sim\Delta EBA\left(g-g\right)\Rightarrow\frac{BD}{EB}=\frac{DA}{BA}=\frac{DA}{CA}\Rightarrow EB.DA=BD.CA\left(4\right)\)
Từ (3) và (4) ta có \(EB.DA=BC.CD\)
Từ đó suy ra MC = MA hay M là trung điểm của AC (đpcm).
cần mình câu b thôi nhé : chứng minh AQ // BC