K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{ABH}=\widehat{ADC}\)(1)

Xét (O) có 

ΔADC nội tiếp đường tròn(A,D,C∈(O))

AD là đường kính(gt)

Do đó: ΔADC vuông tại C(Định lí)

Suy ra: \(\widehat{DAC}+\widehat{ADC}=90^0\)(Hai góc nhọn phụ nhau)(2)

Ta có: ΔABH vuông tại H(AH⊥BC)

nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(Hai góc nhọn phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{BAH}=\widehat{DAC}\)(đpcm)