Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em không vẽ được hình, xin thông cảm
a, Ta có góc EAN= cungEN=cung EC+ cung EN
Mà cung EC= cung EB(E là điểm chính giữa cung BC)
=> góc EAN=cungEB+ cung EN=góc DFE (tính chất góc ở giữa)
=> tam giác AEN đồng dạng tam giác FED
Vậy tam giác AEN đồng dạng tam giác FED
b,Ta có EC=EB=EM
Tam giác EMC cân tại E => EMC=ECM
MÀ EMC+AME=180, ECM+ABE=180
=> AME = ABE
=> tam giác ABE= tam giác AME
=> AB=AM => tam giác ABM cân tại A
Mà AE là phân giác => AE vuông góc BM
CMTT => AC vuông góc EN
MÀ AC giao BM tại M
=> M là trực tâm tam giác AEN
Vậy M là trực tâm tam giác AEN
c, Gọi H là giao điểm OE với đường tròn (O) (H khác E) => O là trung điểm của EH
Vì M là trực tâm của tam giác AEN
=> \(EN\perp AN\)
Mà \(OI\perp AN\)(vì I là trung điểm của AC)
=> \(EN//OI\)
MÀ O là trung điểm của EH
=> I là trung điểm của MH (đường trung bình trong tam giác )
=> tứ giác AMNH là hình bình hành
=> AH=MN
Mà MN=NC
=> AH=NC
=> cung AH= cung NC
=> cung AH + cung KC= cung KN
Mà cung AH+ cung KC = góc KMC(tính chất góc ở giữa 2 cung )
NBK là góc nội tiếp chắn cung KN
=> gócKMC=gócKBN
Hay gócKMC=gócKBM
=> CM là tiếp tuyến của đường tròn ngoại tiếp tam giác MBK( ĐPCM)
Vậy CM là tiếp tuyến của đường tròn ngoại tiếp tam giác BMK
A B C P D R M N E F O
Bốn điểm A,B,D,C cùng nằm trên (O) theo thứ tự đó => ^BAC + ^BDC = 1800
Vì PM // AB, PN // AC nên ^MPN = ^BAC. Do đó ^MPN + ^BDC = 1800 => Tứ giác PMDN nội tiếp
Lúc này, điểm R nằm trên đường tròn ngoại tiếp tứ giác PMDN
=> ^DRP = ^DNP = ^DCA (Bởi PN // AC) = ^DRA. Ta thấy A,P nằm cùng phía so với DR nên RP trùng RA
Hay A,P,R thẳng hàng. Dễ thấy tứ giác AEPF là hình bình hành, suy ra AP chia đôi EF
Vậy nên RP cũng chia đôi EF (đpcm).
a: Xét (O) có
MB,MC là tiếp tuyến
=>MB=MC
mà OB=OC
nên OM là trung trực của BC
Xét ΔMEB và ΔMBF có
góc MBE=góc MFB
góc EMB chung
=>ΔMEB đồng dạng với ΔMBF
=>MB^2=ME*MF=MH*MO